Am Shams University Faculty of Engineering

HYDRAULIC JUMP CONTROLLED BY JETS

By

NAHLA M. ABDELHAMID ABOUL ATTA

(M.Sc. Civil Eng. - Ain Shams University)

A Thesis Submitted in Fulfillment of The Requirements of The Ph.D.DEGREE IN CIVIL ENGINEERING

(VOLUME I)

33643 33723

627.52 V.M

Supervised by

Prof. Dr. MOHAMED WAFAIE ABDELSALAM

Professor of Irrigation Designs Faculty of Engineering - Ain Shams University

Dr. ABDELKAWI MOKHTAR KHALIFA

Assoc. Professor, Irrigation and Hydraulics Dept. Faculty of Engineering - Ain Shams University

Dr. MAHMOUD ABDELLATEEF MOHAMED

Assoc . Professor, Irrigation and Hydraulics Dept. Faculty of Engineering - Ain Shams University

CAIRO - EGYPT

1990

To
MY PARENTS
MY HUSBAND
MY SONS

BOARD OF EXAMINERS

Signature

 Prof. Dr. Mohamed El-Niazi Hammad Professor of Irrigation Designs, Vice Dean, Faculty of Engineering, Ain Shams University

Mag

Prof. Dr. Royal H. Brooks
 Professor of Civil Engineering,
 Colorado State University

Royal H. Brooks

3. Prof. Dr. Mohamed Wafaie Abdelsalam Professor of Irrigation Designs, Faculty of Engineering, Ain Shams University

maest del salax

STATEMENT

This dissertation is submitted to Aïn Shams University for the degree of Ph.D. in Civil Engineering.

The work included in this thesis was carried out by the author in the Hydraulic and Irrigation Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt, and in the Civil Engineering Department, The Pennsylvania State University, U.S.A., from June 1987 to September 1990.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : 7/10/1990

Signature: Walls thoughthe

Name : Nahla M. Aboul Atta

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to all my supervisors for their supportive guidance during my staying at The Pennsylvania State University in the U.S.A. and after my return to Ain Shams University in Cairo, Egypt.

I am deeply indebted to Professor Dr. Mohamed Wafaie Abdel Salam, Professor of Irrigation Design, Faculty of Engineering, Ain Shams University, Cairo, Egypt, for his guidance, useful suggestions and valuable comments for this study.

I wish to express my thanks to Dr. Abdel Kawi Khalifa, Associate Professor of Irrigation Design, Faculty of Engineering, Ain Shams University, Cairo, Egypt, for his constructive advices, valuable discussions and useful revision of this work.

I also wish to express my gratitude to Dr. Mahmoud Abdel Lateef, Associate Professor of Irrigation Design, Faculty of Engineering, Ain Shams University, Cairo, Egypt, for his generous assistance, fruitful encouragement and constant guidance throughout this whole work.

Many thanks are also due to Professor Dr. Joseph Reed, Professor of Civil Engineering at The Pennsylvania State University, in the U.S.A., for his supervision and valuable discussions and revision of this work during my staying at The Pennsylvania State University.

Thanks are also due to the staff of the Hydraulic Laboratory, The Pennsylvania State University, for their contribution in the achievement of this work.

ABSTRACT

This study investigates the characteristics of the free and submerged jump controlled by floor jets.

Im the theoretical study continuity and momentum principles are used to develop expressions relating the main characteristics of the flow and the hydraulic jump over floor jets. The energy equation was used to obtain the jump energy loss.

Experiments are conducted in a rectangular flume with a perforated bed. Each type of the hydraulic jump is investigated experimentally under different flow conditions and different jets arrangements and positions.

is Statistical analysis used to analyze the and experimental data regenerate the necessary characteristics design equations for the perfect, repelled and submerged jump controlled by jets. From these equations the relative jets position, the angle of inclination of the jets, and the relative jet diameter which is optimum from both the hydraulic and the economic points of view were obtained.

Finally the experimental data is used for the verification of the theoretical equations, also an evaluation of the study is presented and practical applications are discussed.

TABLE OF CONTENTS

	PAGE
CHAPTER (1) —	
INTRODUCTION	1
CHAPTER (2)	
LITERATURE REVIEW	. 5
2.1. Hydraulic Jump on Smooth Horizontal Floors	. 5
2.1.1.Length of Jump	. 5
2.1.2. Water Surface Profile and Sequent Dep	ths 8
2.1.3.Energy loss	. 14
2.2. Hydraulic Jump on Roughened Beds	. 17
2.2.1.Control of Jump by Sills, Baffles and	
Weirs	. 17
2.2.2.Control of Jump by Roughness	. 25
2.2.3.Control of Jump by Jets	. 29
2.3. Uniqueness of Present Study	. 32
CHAPTER (3)	
THEORETICAL APPROACH	. 33
3.1. The Free Hydraulic Jump	. 34
3.1.1.The Relative Depth	. 35
3.1.2.The Relative Energy Loss	. 44
3.2. The Submerged Jump	. 48
3.2.1.The Inlet Depth Ratio	. 49
3.2.2.The Relative Energy Loss	. 57
CHAPTER (4)	
EXPERIMENTAL STUDY	. 61
4.1. Experimental Equipment	. 61
4.1. Experimental Equipment	
4.1.1.The Flume	. 61
·	. 61 . 65

			ii.
	4.2.	Methods of Measuring and Instruments	67
		4.2.1.Discharge Measuring	67
		4.2.2.Measurement of Depths and Water Surface	
		Profile	67
	4.3.	The Perforated Bed	69
٠,	4.4.	Test Procedure	70
		4.4.1.Free Hydraulic Jump on Smooth Bed	70
		4.4.2.Free Hydraulic Jump on Perforated Bed	72
		4.4.2.1.Perfect Jump	72
		4.4.2.2.Repelled Jump	76
		4.4.3.Submerged Hydraulic Jump on Perforated	
		Bed	78
	4.5.	Experimental Data	82
CHAP	TER (5)	
	ANAL	YSIS AND DISCUSSION OF THE EXPERIMENTAL DATA	85
	5.1.	Free Jump	85
		5.1.1.Free Jump on Smooth Bed	85
		5.1.2.Perfect Jump	86
		5.1.2.1. Water Surface Profile	86
		5.1.2.2.The Relative Jump Length	99
		5.1.2.3. The Relative Depth	111
		5.1.2.4. The Relative Energy Loss	123
		5.1.2.5.The Relative Discharge	135
		5.1.2.6.Optimum Stilling Basin	146
		5.1.3.Repelled Jump	148
		5.1.3.1. Water Surface Profile	148
		5.1.3.2. The Relative Jump Length	161
		5.1.3.3.The Relative Depth	173
		5.1.3.4. The Relative Energy Loss	185
		5.1.3.5.The Relative Discharge	197
		5.1.3.6.Optimum Stilling Basin	208
	5.2.	Submerged Jump	210
		5.2.1.Water Surface Profile	210
		5.2.2. The Relative Jump Length	233
		F 0 2 The Triet Factor	SEC
		Character I de carre d'un Character I bair acarille.	

		i
5	5.2.4. The Relative Energy Loss	270
5	5.2.5.The Relative Discharge	288
5	5.2.6.Optimum Stilling Basin	305
CHAPTER (6)		
VERIF1	CATION, EVALUATION AND APPLICATION OF	
THE ST	TUDY	307
6.1. V	erification of the Study	307
4	3.1.1.Perfect Jump	307
6	3.1.2.Repelled Jump	309
6	3.1.3.Submerged Jump	310
6.2. E	Evaluation of the Study	311
6.3. A	Application of the Study	313
•	3.3.1.Design Procedure	313
6	3.3.2.Illustrative Example	314
CHAPTER (7)		
	JSIONS AND RECOMMENDATIONS	316
6.1. (Conclusions	316
6.2. F	Recommendations	320
REFERENCES	•••••	321
APPENDIX I	(AI) Figures	330
APPENDIX I		420
APPENDIX I	II Computer Programs	565

LIST OF FIGURES

Figure No.	Page
(3.1)	Free Jump Definition Sketch 30
(3.2)	Evaluation of Q_3 for
	Free Jump 39
(3.3)	Definition Sketch for
	Submerged Jump 50
(3.4)	Evaluation of Q_4 for
	Submerged Jump 54
(4.1)	The Testing Flume 63
(4.2)	A Longitudinal Section in
	the Testing Flume 64
(4.3)	Details 60
(4.4)	Calibration Chart 68
(4.5)	The Distribution of Floor
	Jets 7
(4.6)	Relation Between H and Q 75
(5.1) to (5.12)	Water Surface Profiles for
	Perfect Jump 86 - 98
(5.13) to (5.15)	Relation Between L_b/Y_1 and L_j/Y_2
	for Perfect Jump 101 - 103
(5.16) to (5.18)	Relation Between θ and L_j/Y_2
	for Perfect Jump 104 - 106
(5.19) to (5.21)	Relation Between $\mathrm{D/Y_2}$ and $\mathrm{L_j/Y_2}$
	for Perfect Jump 108 - 110
(5.22) to (5.24)	
	for Perfect Jump 113 - 115
(5.25) to (5.27)	Relation Between Θ and Y_2/Y_1
	for Perfect Jump 116 - 118
(5.28) to (5.30)	Relation Between D/Y2 and Y2/Y1
·	for Porfort lump 120 - 120

Figure No.		Page
(5.31) to (5.33)	Relation Between L_b/Y_1 and $E_L/$	′E ₁
	for Perfect Jump	125 - 127
(5.34) to (5.36)	Relation Between Θ and E_L/E_1	
	for Perfect Jump	128 - 130
(5.37) to (5.39)	Relation Between $\mathrm{D/Y_2}$ and $\mathrm{E_L/E}$	<u> 1</u>
	for Perfect Jump	132 - 134
(5.40) to (5.42)	Relation \hat{B} etween L_b/Y_1 and Q_J/Y_2	′Q _T %
	for Perfect Jump	136 - 138
(5.43) to (5.45)	Relation Between Θ and $Q_J/Q_T\%$	
	for Perfect Jump	140 - 142
(5.46) to (5.48)	Relation Between D/Y_2 and Q_J/Q_2	⊋ _T %
	for Perfect Jump	143 - 145
(5.49)	Relation Between F_1 and Y_2/Y_1	
	for Optimum Stilling Basin	147
(5.50)	Relation Between F_1 and L_j/Y_2	
	for Optimum Stilling Basin	147
(5.51)	Relation Between F_1 and E_L/E_1	
	for Optimum Stilling Basin	147
(5.52) to (5.63)	Water Surface Profiles for	
	Repelled Jump	149 - 160
(5.64) to (5.66)	Relation Between L_b/Y_1 and L_j/Y_2	YY ₂
	for Repelled Jump	163 - 165
(5.67) to (5.69)	Relation Between Θ and L_j/Y_2	
	for Repelled Jump	166 - 168
(5.70) to (5.72)	Relation Between D/Y_2 and L_j/Y_2	1 ₂
	for Repelled Jump	170 - 172
(5.73) to (5.75)	Relation Between L_b/Y_1 and $Y_2/$	'Y ₁
·	·	175 - 177
(5.76) to (5.78)	Relation Between θ and Y_2/Y_1	177 - 179
	for Repelled Jump	

F	i	g	u	r	е	No	
---	---	---	---	---	---	----	--

Page

(5.79) to (5.81)	Relation Between D/Y_2 and Y_2/Y_1
	for Repelled Jump 182 - 184
(5.82) to (5.84)	Relation Between L_b/Y_1 and E_L/E_1
	for Repelled Jump 187 - 189
(5.85) to (5.87)	Relation Between θ and E_L/E_1
	for Repelled Jump · 190 - 192
(5.88) to (5.90)	Relation Between D/Y_2 and E_L/E_1
	for Repelled Jump 194 - 196
(5.91) to (5.93)	Relation Between L_b/Y_1 and $Q_J/Q_T\%$
	for Repelled Jump 198 - 200
(5.94) to (5.96)	Relation Between θ and $Q_J/Q_T\%$
	for Repelled Jump 202 - 204
(5.97) to (5.99)	Relation Between D/Y_2 and $Q_J/Q_T\%$
	for Repelled Jump 205 - 207
(5.100)	Relation Between F_1 and Y_2/Y_1
	for Optimum Stilling Basin 209
(5.101)	Relation Between F_1 and $L_{\bar{j}}/Y_2$
	for Optimum Stilling Basin 209
(5.102)	Relation Between F_1 and E_L/E_1
	for Optimum Stilling Basin 209
(5.103) to (5.124)	Water Surface Profiles for
	Submerged Jump 211 - 232
(5.125) to (5.127)	Relation Between L_b/Y_1 and L_{aj}/Y_1
	for Submerged Jump 235 - 237
(5.128) to (5.133)	Relation Between θ and L_{ej}/Y_1
	for Submerged Jump 239 - 244
(5.134) to (5.139)	Relation Between D/Y_2 and L_{aj}/Y_1
	for Submerged Jump 245 - 250
(5.140) to (5.142)	Relation Between L_b/Y_1 and Y_3/Y_1
	for Submerged Jump 254 - 256

Figure No.		Pa	ge	•
(5.143) to (5.148)	Relation Between θ and Y_3/Y_1			
	for Submerged Jump	257	-	262
(5.149) to (5.154)	Relation Between D/Y_2 and Y_3/Y_1			
	for Submerged Jump	264	-	269
(5.155) to (5.157)	Relation Between L_b/Y_1 and E_L/E_1	1		
	for Submerged Jump	272	-	274
(5.158) to (5.163)	Relation Between Θ and E_L / E_1			
	for Submerged Jump	275	-	280
(5.164) to (5.169)	Relation Between $\mathrm{D/Y_2}$ and $\mathrm{E_L/E_1}$			
	for Submerged Jump	282	-	287
(5.170) to (5.172)	Relation Between L_b/Y_1 and Q_J/Q_1	} ⊤%		
	for Submerged Jump	289	-	291
(5.173) to (5.178)	Relation Between Θ and $Q_J/Q_T\%$			
	for Submerged Jump	293	-	298
(5.179) to (5.184)	Relation Between D/Y_2 and Q_J/Q_7	%		
	for Submerged Jump	299	_	304
(5.185)	Relation Between F_1 and Y_3/Y_1			
	for Optimum Stilling Basin			306
(5.186)	Relation Between F_1 and L_{sj}/Y_2			
	for Optimum Stilling Basin			306
(5.187)	Relation Between F_1 and E_L/E_1			
	for Optimum Stilling Basin			306
(6.1)	Verification of Theoretical			
	Equation for Perfect Jump			308
(6.2)	Verification of Theoretical			
(e 2)	Equation for Repelled Jump Verification of Theoretical			309
(6.3)	Equation for Submerged Jump			310
(6.4)	Comparision Between Different			J 10
,	Type of Stilling Basins			311