
IDENTIFICATION OF SYNCHRONOUS MACHINE MODELS USING POWER SPECTRAL ANALYSIS

 $\mathbf{B}\mathbf{Y}$

SALAH EL-DIN ABD EL-HAMID EMAM B.Sc. (Eng.), 1973, M.Sc., 1978
Ain Shams University

3009

A Thesis Presented

FOR

The Degree of Doctor of Philosophy (Ph.D.)

In Electrical Engineering

University of Ain-Shams

Faculty of Engineering

Supervised By

Prof. Dr. S.A. Kandil & Dr. Hamdy S. Khalil

1985

T0

WALID

AHMED, AMRO,

and

MY WIFE THANAA

EXAMINING COMMITTEE

- 1. Prof. Dr. AHMED H. EL-ABIAD
 Professor at Purdue University (U.S.A)
 and now on sabbatical leave at
 Saudi Arabia.
- Prof. Dr. SAYED A. HASSAN
 Professor at Monoufia University
- 3. Prof. Dr. EL-SADEK A. KANDIL
 Professor at Ain Shams University
 (For the supervisors).

The author has agreed that the Library, Faculty of Engineering, Ain-Shams University, may make this thesis freely available for inspection. Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purposes may be granted by the professor or professors who supervised the thesis work recorded herein or, in their absence, by the Head of the Department in which this thesis work was done. It is understood that due recognition will be given to the author of this thesis and to the University of Ain-Shams in any use of the material in this thesis. Copying or publication or any other use of the thesis for financial gain without approval by the University of Ain-Shams and the author's written permission is prohibited.

Requests for permission to copy or to make other use of material in this thesis or in part should be addressed to:

Head of the Electrical Power and Machine Department Faculty of Engineering University of Ain-Shams Cairo, Egypt.

ACKNOWLEDGEMENT

The author wishes to express his gratitude to Professor Dr. E.S.A. Kandil, head of the electrical power and machine department at Ain-Shams University, for his interest in this project, guidance and continuous encouragement.

The author is greatly grateful to Dr. Hamdy S. Khalil for suggesting the project, and continuous supervision and valuable discussions during the course of this research. His help and patience particularly during the programming period and revising the text are highly appreciated.

He is also wholeheartedly grateful to his wife, Thanaa, for her patience and help in preparing the orginal manuscript. Gratitude is expressed to both the Electrical Power and Machine Department, Ain Shams University for granting leave and permission to pursue postgraduate studies, and the Mission Department, Ministry of High Education, for its financial support during the period of this project.

iii

Summary of Ph.D. Thesis On

IDENTIFICATION OF SYNCHRONOUS MACHINE MODELS USING POWER SPECTRAL ANALYSIS"

Submitted by: Eng. Salah El-Din A.H. Emam, B.Sc., M.Sc.

Submitted to: Faculty of Engineering, Ain Shams

University.

The investigation of dynamic performance of a power system includes the proper modelling of its generators. Rather simple approaches are needed to make the computational work acceptable, but on the other hand, the choice of the accuracy level to which the model must confirm is an important factor. The main objective of this thesis is to develop and identify the on-line and off-line models of a synchronous machine using a statistical method of identification.

The statistical method of identification is performed through determining the frequency response functions or transfer functions not only by off-line testing but also by on-line testing during normal plant operation, with minimum disturbance. During testing, the traditional forcing functions (ramp, unit step, sinusoidal, etc.) must be large enough to avoid the resulting output response being swamped by the noise signal. On the other hand, these of large traditional signal may drive the system into the nonlinear portion of its characteristics and this would lead to erroneous results. For this reason traditional signals can not be considered good enough for the identification purpose whatever it is on-line or off-line.

iv

The method of identification adopted in this thesis uses a more proper testing signal which is called Pseudo. Random Binary Sequence (PRBS). This signal has random characteristics, and a spectrum as the white noise in the range of frequency of the identified system. The power spectral analysis technique, using the PRDS signal and Fast Fourier transform, is used to determine the synchronous machine models.

The thesis contains six main chapters, other than the nomenclature and three appendices.

Chapter 1 is an introduction, giving the problem to be solved and a review of identification methods and modelling of synchronous machines.

Chapter 2 presents the mathematical theory of power spectral analysis technique and the Fast Fourier Trans-form (FFT) algorithm.

Chapter 3 is concerned with the generation, analysis, and application of the PRBS signal. The use of this signal and correlation techniques for identification of a simple system consisting of an R-C circuit is explained. The recommendations for using the PRBS signal in power spectral identification are presented.

Chapter 4 gives a survey of the different synchronous machine models. The derivation of the on-line and off-line models of synchronous machine has been developed.

Chapter 5 presents three tests require for the identification of the on-line model and other three tests

for the off-line model. Computer programs based on calculating their output responses and using the power spectral technique, have been developed to compute the frequency response functions of the two models. A comparison between the predicted values of these frequency response functions and those obtained from power spectral analysis is presented. Good agreement between the two sets of results is obtained. A description of the instrumentation techniques required for the experimental identification of the on-line and off-line synchronous machine models is given.

Chapter 6 presents a summary and general conclusions of the thesis.

Appendix A gives, as an example, a list of the computer program developed for the identification of the R-C circuit.

Appendix B presents the per unit system used in the synchronous machine models.

Appendix C gives the state-space representation of the synchronous machine for on-line and off-line models.

TABLE OF CONTENTS

																			Page
Сору	righ	t	•		•										•				i
Acknowledgment								•		•	•				•				ii
Summ	ary		•										•		•	•			iii
Tabl	e of	Content	B		•				•								٠	•	vi
List	of !	Figures	•		•			•	•					•	•	٠		•	хi
List	of	Tables	•	• •			•	•	•	•	٠		•		•		•	•	xxiii
List	of	Symbols	•		•	• •	•	•	•	•	•	•	•	•	•	•	•	•	ivxx
1.	INTR	DUCTION	Ι.																
-	1.1	General	L .		•				٠					•			•		1
		Modelli							M	ac	hi	ne	s	•	•				1
		Methods	_		-														5
	=	Purpose		•														•	7
2.	CORR	ELATION	THE	ORY	AN:	D S	YSI	Elv	I F	'RE	QU	EL	CY		Œ	PC	NS	EΕ	
	FUNC	TIONS																	
	2.1	General			•		•	•		•				•	•	٠		•	9
	2.2	Correla	tio	n Co	onc	ept	s		•	•	į			•					10
		2.2.1	Con	tinı	10u	s v	ar	iat	ole	e c	pe	re	ti	or	ı	۰	•		10
		2.2.2	Dis	cre	te	ver	ial	ble	e c	pe	ra	ti	or	1	•		•	•	12
	2.3	The Aut	oco	rre.	lat	ion	$\mathbf{F}_{\mathbf{i}}$	ınc	eti	or	l	•				•	•		14
	2.4	The Pov	ver	Spe	ctr	al	Dei	ns i	Lty	F	ur	ic t	iic	n	•		•		17
	2.5	The Cro	-aa	Cor:	rel	ati	on	Fι	inc	ti	.on	Ĺ	•	•		•	۰	•	19
	2.6	The Cro)ss-	Spe	ctr	al	Dei	nsi	Lty	r E	ur	ic t	ii	n	•	•		•	20
	2.7	Input-0	utp	ut 1	Rel	ati	ons	shi	ps	f	or	` ε	i I	ii	ie s	ar			
		System	•		•		•	•	•		•		•	•	•	•	•	•	23
		2.7.1	Sin	gle	in	put	; :	3 ir	ıgl	.e	ου	ıtŗ	ut	;]	Lir	ne e	ar		
			sys	tem	•		•	•		•	•	•	•	•	•	•	•	•	23
		2.7.2	Mul	tip	le	inp	ut	; :	ir	ıgl	e.	ου	ιtį	out	ե <u>-</u>	liz	1e	ar	
			sys	tem	•		•	•	•	•	•	•	•	•	•	٠		•	32
		2.7.3	Sne	cia.	l c	ase	of	e t	wc	i	nn.	ut	s				_		36

		rage
2.8	Coherence Functions	37
	2.8.1 The ordinary coherence function	37
	2.8.2 The partial and multiple coherence	
	functions	38
2.9	Fourier Transform	42
	2.9.1 The Fourier integral	42
	2.9.2 The discrete Fourier transform (DFT)	44
	2.9.3 The fast Fourier transform (FFT)	46
2.10	Errors Associated with Spectral Analysis	
	Technique	57
	2.10.1 The sampling process	59
	2.10.2 Leakage and the use of data windows.	6 2
	2.10.3 The picket fence effect	63
2.11	Spectrum Functions Smoothing	63
CHAR	ACTERISTICS AND APPLICATIONS OF PRBS SIGNAL	
FOR :	IDENTIFICATION.	
3.1	General	65
3.2	The Pseudo Random Binary Sequence (PRBS)	
	Signal	6 5
	3.2.1 Generation of PRBS signal	66
	3.2.2 Properties of PRBS signal	68
3.3	Autocorrelation and Power Spectral Density	
	of PRBS	71
3.4	Advantages of PRBS Signal for Identification.	75
3.5	Power Spectral Density of PRBS Signal Using	
	FFT	77
	3.5.1 Effect of number of samples	77
	3.5.2 Effect of sampling rate	79
	3.5.3 Effect of window shapes	84
	3.5.3.1 Effect of window functions	
	with 2^n samples	84
	3.5.3.2 Effect of window functions	
	with 2^n-1 samples	91

viii

			Page										
	3.6	Application of PRBS signal for System											
		Identification	91										
		3.6.1 Effect of number of sequences (runs).	107										
		3.6.2 Effect of clock pulse interval	107										
	3.7	Experimental Verification	133										
		3.7.1 Pseudo random binary sequence											
		generator	133										
		3.7.2 Experimental results	137										
	3.8	Conclusions	137										
4.	MODE	LS OF IDEAL SYNCHRONOUS MACHINES.											
	4.1	General	141										
	4.2	Ideal Synchronous Machines	142										
	4.3	General Model of Synchronous Machine	143										
		4.3.1 Flux linkage equations	144										
		4.3.2 Voltage relations	145										
		4.3.3 Torque equation	145										
	4.4	Simplified Models of Synchronous Machine	146										
		4.4.1 Model 1: the inertial model	146										
		4.4.2 Model 2: the E_{G}^{\dagger} model	150										
		4.4.3 Model 3: the E_d^{\dagger} and E_d^{\dagger} model	153										
		4.4.4 Model 4: the subtransient model	159										
		4.4.5 Model 5: On-line synchronous											
		machine model	162										
		4.4.6 Model 6: off-line synchronous											
		machine model	168										
	4.5	Conclusions	172										
5.	IDENTIFICATION OF SYNCHRONOUS MACHINE MODELS												
	USIN	G POWER SPECTRAL ANALYSIS.											
	5.1	General	174										
	5.2	Identification of On-Line Model of											
		Synchronous Machine	174										

			Page
	5.2.1	Test 1: the generator is off-line	
		at rated speed and voltage	175
	5.2.2	Test 2: the generator is on-line at	
		no-load (active power = 0), and at	
		rated speed and voltage	176
	5.2.3	Test 3: the generator is on-line and	
		operating at full load	178
5.3	Identi	fication of the Machine Operational	
	Functi	ons Using Power Spectral Analysis	178
	5.3.1	Simulation and identification of	
		$G_1(p)$ and $G_2(p)$	179
	5.3.2	Simulation and identification of	
		$G_3(p)$ and $G_4(p)$	180
	5.3.3	Simulation and identification of	
		G ₅ (p)	186
	5.3.4	Computer results of operational	
		functions G_1 to G_5	187
5.4	Identi	fication of Off-Line Model of	
	Synchr	conous Machine	208
	5.4.1	Flow chart of the computer program .	210
	5.4.2	State-space representation of	
		synchronous machine at standstill	210
		5.4.2.1 Case 1: the machine has no	
		damper circuits	210
		5.4.2.2 Case 2: the machine has one	
		damper circuit on each axis.	214
5.5	Instru	mentation Techniques	222
	5.5.1	Experimental setup for the identific-	
		ation of on-line synchronous machine	
		model	222
	5.5.2	Experimental setup for the identific-	
		cation of off-line synchronous	
		machine model	230
		5.5.2.1 Determination of the machine	
		operational impedances	230

		Page
	5.5.2.2 Determination of the synchronous machine open-	
	circuit operational function.	230
	5.6 Conclusions	234
6.	SUMMARY AND CONCLUSIONS.	236
7.	REFERENCES.	242
в.	APPENDICES	
	Appendix A: List of computer program developed	
	for the identification of the R-C	
	circuit	251
	Appendix B: State space equations of synchronous	
	machine	267
	Appendix C: Per-unit system	272