1 agant &

AIN SHAMS UNIVERSITY

LOCAL AREA NETWORKS PERFORMANCE EVALUATION

A THBSIS

SUBMITTED TO THE FACULTY OF ENGINEERING
ELECTRONICS AND COMPUTER ENGINEERING DEPARTMENT
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

IN

BLECTRICAL ENGINEERING

ΒY

YASSER HESHAM DAKROURY

SUPERVISED BY

PROF. HUSSEIN I. SHAHEIN

1986

2

To my parents

ACKNOWLEDGMENT

I wish to express my deepest gratitude to professor Hussein Shahein for his kind guidance, constructive criticism, and great encouragement.

I am indebted to Professor Shahein for his invaluable suggesstions and unlimited help throughout all the research steps.

I would like also to express my sincere appreciation to Dr. Ashraf Madkour for his help and competent advices.

Thanks are also extended to everyone of my colleagues who helped me.

ABSTRACT

A comparative performance evaluation study for Local Area Networks (LANs) is presented in this thesis. Three major LAN protocols, namely Carrier Sense Multiple Access with Collision Detection (CSMA/CD), Token Ring and Token Bus are considered in the comparative study. The medium access control of the three protocols is determined by the IEEE 802 standard specifications.

The performance is measured in terms of the delay-throughput characteristics. The thesis includes a comprehensive discussion about how the performance of the different LANs protocols is affected by the network parameters such as, the transmission rate, the number of nodes, the network distance and the packet length.

The work presents a novel algorithm for improving the performance of local area networks, which uses the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol under high traffic conditions. The basic features of this algorithm when compared with other techniques are: its simplicity and that it requires no hardware modification, hence no extra cost is required.

A performance evaluation simulator is developed to evaluate the performance of the protocols under investigations. The simulator follows the IEEE 802 standard specifications. This simulator was built to help as a design aid for designers of LANs. Since, for a given network configuration, the simulator will display the throughput - delay curves, so that the designer can select the protocol with the best characteristics for his operating conditions.

Extensive simulation scenarios on the different LAN parameters; namely, channel capacity, number of stations, network distance, and packet length, were carried out. The results obtained from these scenarios supports our claim.

TABLE OF CONTENTS

	Page
ABSTRACT	i
CHAPTER 1 : INTRODUCTION	
1.1- Introduction 1.1.1- Network Goals	1
1.2- Local Area Network Definition	2
1.3- Local Area Network Benefits and Pitfalls 1.3.1- Local Area Networks Benefits[4] 1.3.1.1- Interconnection with Other Networks 1.3.1.2- High Reliability 1.3.1.3- Resource Sharing 1.3.1.4- Improved System Performance 1.3.1.5- Simple Software Design 1.3.1.6- Multivendor Support 1.3.1.7- Improved Availability/Survivability 1.3.2- Local Area Network Pitfalls 1.3.2.1- Interoperability is not Guaranteed 1.3.2.2- Problems of Integrity, Security/Privac 1.3.2.3- Creeping Escalation 1.3.2.4- Loss of Control	3 4 6 6 6 6 7 7 7 8 8 9
1.4- LAN Applications 1.4.1- Office Applications 1.4.2- University Applications 1.4.3- Factory Applications 1.4.4- Hospital Applications 1.4.5- Bank Applications	9 9 10 10 10
1.5- Local Area Network Components 1.5.1- The Transmission Medium 1.5.2- The Transmission Controller 1.5.3- The Network Interface 1.5.4- The Network Protocol	11 11 12 12 12
1.6- Transmission Techniques 1.6.1- Baseband	13 13

4

	Page
1.7- Local Area Network Topologies 1.7.1- The Mesh Network 1.7.2- The Fully Interconnected Network 1.7.3- The Star Network 1.7.4- The Ring Network	16 16 18 18 21
1.7.4.1- The Star-Ring Architecture 1.7.5- The Loop Network 1.7.6- The Bus Network 1.7.6.1- Baseband Bus	28 34 36 36
1.7.6.2- Broadband Bus 1.7.7- The Tree Network	40 41
<pre>1.8- Classes of Local Networks 1.8.1- Local Area Network 1.8.2- High Speed Local Network 1.8.3- Computerized Branch Exchange</pre>	43 47 48 49
CHAPTER 2 : LOCAL AREA NETWORKS PROTOCOLS	
2.1- Introduction	50
2.2- The ISO Refrence 2.2.1- The Physical Layer 2.2.2- The Data Link Layer 2.2.3- The Network Layer 2.2.4- The Transport Layer 2.2.5- The Session Layer 2.2.6- The Presenting Layer 2.2.7- The Application Layer	52 54 54 55 55 55 56
2.3- LAN Architecture Relative to OSI	56
2.4- Medium Access Control 2.4.1- Fixed Assignment Techniques 2.4.2- Random Access Techniques 2.4.2.1- Random Access Techniques-Bus Networks 2.4.2.1.1- ALOHA Technique 2.4.2.1.2- Carrier Sense Multiple Access	59 60 62 62 63
Technique 2.4.2.2- Random Access Technique-Ring Networks	66
2.4.2.2.1- Register Insertion 2.4.2.2.2- Slotted Ring	72

	Page
<pre>2.4.3- Centerally Demand Assignment Technique 2.4.3.1- Centeralized Reservation 2.4.3.2- Polling 2.4.4- Demand Assignment with Distributed Control 2.4.4.1- Token Ring 2.4.4.2- Token-Bus 2.4.4.3- Distributed Polling 2.4.4.4- Distibuted Reservation 2.4.4.5- Minislotted Alternating Priorities (MSAP)</pre>	75 80 80 81 83 86 86
CHAPTER 3 : LOCAL AREA NETWORK PERFORMANCE EVALUATION	
3.1- Introduction	88
3.2- Performance Evaluation Methodology	89
3.3- Measures of Performance 3.3.1- Channel Utilization 3.3.2- Delay	91 91 92
3.4- Simple Performance Model of Token Passing and CSMA/CD Protocols	
3.4.1- Channel Utilization Analysis 3.4.2- Delay Analysis 3.4.2.1- Performance of CSMA Protocolos 3.4.2.2- Comparative Performance of Ring Protocols and CSMA/CD 3.4.2.3- Performance of Token Passing Bus Networks	93 104 105 112 116
3.4.3- Performance of LANs at High Speed	121
CHAPTER 4 : PROTOCOL MODELS AND SIMULATOR DESIGN	
4.1- Introduction	123
4.2- IEEE 802 CSMA/CD Protocol 4.2.1- Frame Format	123 127
4.3- IEEE 802 Token Ring 4.3.1- Frame Formats 4.3.1.1- Token Format	129 132 132

		Page
4.4 4	IEEE 802 Token Bus Protocol .1- Frame Formats .4.1.1- Frame Format .4.1.2- Token Format	134 136 136 138
4.5 4.5	Simulator Design .1- The simulating Model .2- Simulator Structure .3- Confidence Interval Calculation	138 138 150 152
CHAPTER	5 : SIMULATION STUDY	
5.1-	Introduction	155
5.2-	Channel Capacity Scenario (C)	155
5.3-	Number of Stations Scenario (N)	166
5.4-	Network Distance Scenario (D)	174
5.5-	Data Length Scenario (L)	183
CHAPTER	6 : A UNIFIED MODIFIED SIMULATOR	
6.1-	Introduction	189
6.2-	Modified CSMA/CD	191
6.3-	Simulation Results	191
6.4-	Unified Simulator	196
CHAPTER	7 : CONCLUSIONS	
7.1-	General Conclusions	197
7.2-	Suggestions for Further Research	199
CHAPTER	8 : REFRENCES	200

CHAPTER 1

INTRODUCTION

1.1. Introduction

The old model of a single computer serving all of the computational needs is rapidly being replaced by another in which a large number of separate , but interconnected computers , do the job . These systems are called Computer Networks .

Tanenbaum (1981) stated that :"A Computer Network is an interconnected collection of autonomous computers ". Two computers are said to be interconnected if they are capable of exchanging information . The connection need not be via a copper wire; lasers, microwave, and earth satellites can also be used . From the above definition, the term autonomous computers means that the master/slave relation between computers is excluded .

1.1.1. Network Goals

There are three important goals for the computer network over the centralized computer system, which cause the centralized computer systems to give way to computer networks. The first goal comes from that many organizations already have a substantial number of computers in operation, often located apart. Interconnecting them

will make all programs, data and other resources available to any one on the network without regard to the physical location of the resource and the user .The second goal is that, a computer network can provide a powerful communication medium among widely separated people. The third goal is to provide high reliability by having alternative source.

Another important reason for distributing the computer power is the relatively low price of computers compared to communication facilities. In some applications data is generated at widely scattered locations. Instead of transmitting all the data to a central computer center somewhere, a computer can analyze the data at the place where it is captured, and only send occasional summaries back to the computer center to reduce the communication cost, which now represents the largest percentage of the total cost. This approach results in a Computer Network [1].

1.2. Local Area Network Definition

A Local Area Network (LAN) is a data communication network , typically a packet communication network , that provides interconnection of a variety of data communicating devices within a small area . In other words it is a resource sharing data communication network , which is limited in geographic scope . There are three elements of significance in this definition.

First , a local area network is a communication

network, not a computer network.

Second , the data communication over devices can include any device that communicates over a transmission medium such as: Computers - Terminals - Peripheral Devices - Telephones-Television Transmitter and Receiver - Sensors (temperature, humidity, flow, etc.). Of course, not all types of local area networks are capable of handling all of these devices.

Third, the geographic scope of a local network is small. Generally, this is limited to a single building, a single work site or several buildings such as in a college campus [2,3,4].

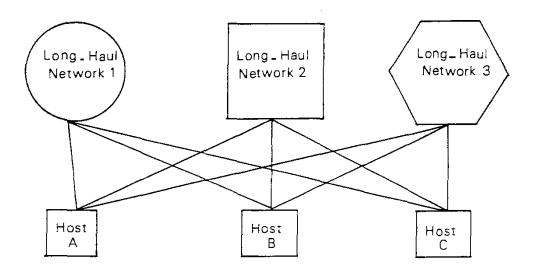
A Local Area Network is characterized by a numder of aspects:

- 1- High bandwidth in the range 0.1 Mb/s 100 Mb/s .
- 2- Limited geographical scope in the range 0.1 25 Km \cdot
- 3- Low error rate in the range 10 -10
- 4- Low utilization .
- 5- Inexpensive transmission medium .

1.3. Local Area Network Benefits and Pitfalls

The desire to connect existing computer systems is not only the driving force for computer networking. The other main force is the superior price/performance ratio of small computers over large ones. Mainframes are roughly a factor of 10 faster than the largest single chip microprocessor, but they cost a thousand times more. This imbalance leads to the trials of replacing a large mainframe by a collection

of microcomputers to outperform them at a lower cost . This goal leads to design a system that consists of many processors located close together , called a local network . In addition to a favorable price/performance ratio , local networks have many benefits that make people interested in building a local network .


1.3.1. Local Area Network Benefits[4]

The most significant benefits for a local area network are:

1.3.1.1. <u>Interconnection with Other Networks</u>

collecting together a collection of computers , terminals and peripherals located in the same building or in adjacent buildings , not only to allow them to intercommunicate but also to allow them to access a remote host or other network . In the absence of local networks , separate connections would be needed between the remote facility and each of the local machines , where as with a local area network the remote facility need only tap onto the local network in one place , as shown in figure 1-1.

In general , a local area network can provide an economical means of connecting a number of hosts within a small area to one or more long-haul networks . This cost saving can be worthwhile even in a situation in which local hosts are to be connected only to a single long-haul network, for two reasons . First , a host interface hardware for local

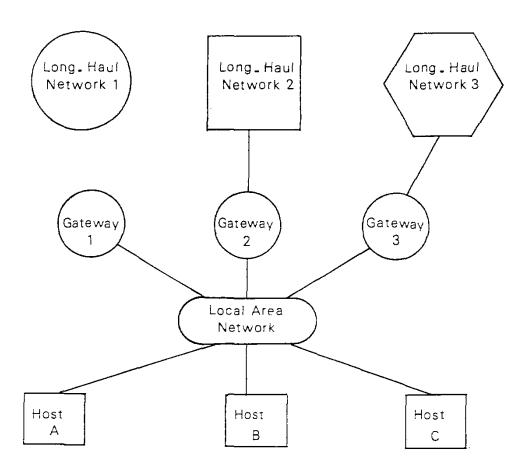


Figure 1-1 The "M*N" Problem and a LAN as one Solution to it [2].