RELATION BETWEEN INFANTS' AND THEIR PARENTS' SERUM APOLIPOPROTEIN (a) LEVELS

THESIS

Submitted For Partial Fulfillment Of Master Degree in Human Clinical Genetics

> By TAREK MOSTAFA KAMAL

> > M.B.B., Ch.

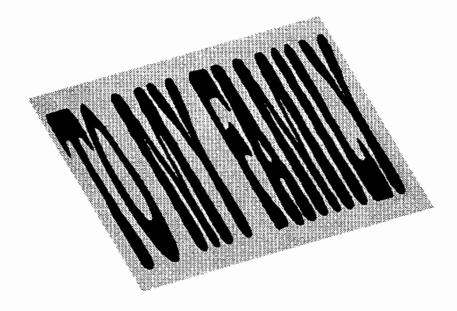
Under supervision of

Dr. Mohamed Abd El-Adl El-Sawy

Assist Prof. Of Genetics, Pediatrics Department

Dr. Karam Mahmoud Abd Elaleem.

Assist. Prof. of Genetics, Pediatrics Department


Dr. Manal Zaghloul Mahran

Lecturer of Clinical Pathology,
Clinical Pathology Department

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1994 بسم **الله الرحمن الرحيم** " **إقرأ باسم ربك الخرَّ خلق** " صدق الله العظيم

[سورة العلق : ١]

Tarek

CONTENTS

	PAGE
LIST OF TABLES	i
TABLE OF FIGURES	ii
LIST OF ABBREVIATIONS	iii
ACKNOWLEDGMENTS	iv
INTRODUCTION AND AIM OF WORK	1
REVIEW OF LITERATURE	3-118
- Types of body lipids	3
- Dyslipoproteinemias	59
- Genetics of Dennatoglyphics	115
SUBJECTS AND METHODS	119
RESULTS	123
DISCUSSION	162
SUMMARY AND CONCLUSION	172
REFERENCES	174
ADADIC SI IMMADV	

LIST OF TABLES

		PAGE
I-	TABLES OF THE REVIEW	
	(1): Lipids of the blood plasma in humans	4
	(2): Properties of the major human lipoproteins	10
	(3) : Plasma lipid concentrations in the first two	
	decades of life.	30
	(4) Plasma lipoprotein concentrations in the first	
	two decades of life	31
	(5) : Guidelines for interpreting Total,	
	LDL, HDL, Cholesterol and Triglyceride	
	levels in children and adolescents aged 2-	
	19 years.	32
	(6) : Typical fatty acids analysis of some fats of	
	animal and plant origin	35
	(7) : Properties and nomenclature of major	
	human apolipoproteins	38
	(8) : Structural comparison between human	
	plasma apo(a) and plasminogen	50
	(9): Lipid and lipoprotein cholesterol levels in	
	infants born to a parent with heterozygous	
	familial hypercholesterolemia	67
	(10): Lipid and lipoprotein levels in familial	
	hypercholesterolemic children aged 1-19	
	years.	67
	(11): Clinical findings in Dyslipoproteinemia	
	due to deficiencies in HDL.	78
	(12): Laboratory findings in Dyslipoproteinemia	
	due to deficiencies in HDL.	79
	(13): Various autosomal recessive, dominant	
	and multifactorial genetic	
	dyslipoproteinemias.	84
	(14): Major clinical and laboratory findings in	
	the recessive dyslipoproteinemia.	85

		PAGE
	(15) : Cutpoints of total and low-density	
	lipoprotein cholesterol for dietary	
	intervention in children and adolescents	
	with a family history of	
	hypercholesterloemia or premature	
	cardiovascular disease.	97
	(16): Characteristics of step-one and step-two	
	diets for lowering blood cholesterol	97
	(17): Step-one diet	104
	(18): Step-two diet	105
	(19): Serving sizes of food	106
	(20): Foods to choose and decrease for step-	
	one and step-two diets.	107
II-	Tables of the Results :	
	A) Laboratory Results :	
	(1) : Mean values of serum lipids and apo(a)	
	levels in infants and their parents	123
	(2) : Serum lipid profile in the infants of the	
	study.	124
	(3): Association of apolipoprotein (a) levels	
	between infants (8 months to 2 years of	
	age) and their parents.	125
	(4) : Serum lipid levels in infants in comparison	
	with their fathers' levels	126
	(5) : Serum lipids and apo(a) levels in infants in	
	comparison with their mother' levels	128
	(6) : Collective table of serum lipids and apo(a)	
	in infants as compared with their parents	130
B)	Tables of the Dermatoglyphics	
	(1) : Percent distribution of different digital	
	patterns among the "High-risk" infants in	
	comparison with their parents.	132

		PAGE
(2)	: Percent distribution of different digital	
	patterns among the "High-risk" infants in	
	comparison with the Egyptian controls.	133
(3)	: Percent distribution of patterns in the	
	"Hypothenar " area among the " High-risk"	
	infants in comparison with their parents.	136
(4)	: Percent distribution of patterns in the	
	"Hypothenar " area among the " High-risk"	
	infants in comparison with Egyptian	139
	controls.	
(5)	: Percent distribution of patterns in the	
` '	"thenar area" in the "High-risk" infants in	
	comparison with their parents.	141
(6)	: Percent distribution of patterns in the	
	"thenar area" in the "High-risk" infants in	
	comparison with the Egyptian control.	144
(7)	: Precent distribution of patterns in the	
	interdigital areas II,III,IV in the "High-	
	risk" infants in comparison with their	
	parents (Rt. hand)	154
(8)	: Precent distribution of patterns in the	
	interdigital areas II,III,IV in the "High-	
	risk" infants in comparison with their	
	parents (Lt. hand)	155
(9)	: Precent distribution of patterns in the	
. ,	interdigital areas II,III,IV in the "High-	
	risk" infants in comparison with the	
	Egyptian controls (a) Rt. hand in females.	156
(10)	: Precent distribution of patterns in the	
	interdigital areas II,III,IV in the "High-	
	risk" infants in comparison with the	
	Egyptian controls (b) Lt. hands in females.	157

		PAGE
(1	11): Precent distribution of patterns in the	
	interdigital areas II,III,IV in the "High-	
	risk" infants in comparison with the	
	Egyptian controls (c) Rt. hands in males.	158
(1	(2): Precent distribution of patterns in the	
	interdigital areas II,III,IV in the "High-	
	risk" infants in comparison with the	
	Egyptian controls (d) Lt. hands in males.	159
(1	3) : Collective table of percent distribution of	
	digital patterns in the "High-risk" infants	
	compared with their parents and the	
	Egyptian control.	160
(1	4) : Collective table of percent distribution of	
	patterns in the interdigital areas among the	
	infants and both of their parents and the	
	Egyptian controls.	161

-ii-LIST OF FIGURES

FIGURE	PAGE
(1): CHOLESTEROL RING	5
(2): BIOSYNTHESIS OF COLESTEROL	6
(3) : MODEL OF GENERAL STRUCTURE OF	
LIPOPROTEIN	8
(4) : SEPARATION OF PLASMA LIPOPROTEINS	
BY ELECTROPHORESIS	9
(5) : THE FORMATION AND SECRETION OF (A)	
CHYLOMICRONS BY AN INTESTINAL	
CELL AND OF (B) VERY LOW DENSITY	12
LIPOPROTEINS BY A HEPATIC CELL.	
(6): COMPOSITE VLDL MODEL	14
(7): SCHEMATIC DIAGRAM OF LDL	16
(8): ASSMANN AND BREWER MODEL OF HDL	18
(9) : STOFFEL AND CO-WORKERS MODEL OF	
HDL	19
(10) : SCHEMATIC MODELS OF HDL2 AND	
HDL3	20
(11) : MODEL OF HDL STRUCTURE WITH	
AMPHIPATHIC HELIX	21
(12) : COREY-PAULING-KINDREW SPACE-	
FILLING MODEL OF RESIDUES 51-71 OF	
APO A-II IN AMPHIPATHIC HELIX	21
(13) : LIPOPROTEIN SYSTEMS FOR	
TRANSPORTING LIPIDS IN HUMANS.	25
(14): CHROMOSOME NUMBER 6	51

FIGURE	PAGE
(15) : SCHEMATIC MODEL OF THE	
STRUCTURE OF HUMAN PLASMA LP(a)	54
(16) : RISK ASSESSMENT FOR	
CARDIOVASCULAR CORONARY HEART	
DISEASE	96
(17) : CLASSIFICATION, EDUCATION AND	
FOLLOW UP BASED ON LOW-DENSITY	
LIPOPROTEIN CHOLESTEROL	96
(18): DIET THERAPY	97
(19) : RELATIONSHIP BETWEEN LOG [APO (a)	
LEVELS IN THE INFANTS] AND LOG [
APO (a) LEVELS IN THEIR FATHERS]	125

-iii-

LIST OF ABBREVIATIONS

A -

- ACAT : Acyl cholesterol acyl transferase.

- ACTH : Adrenocorticotrophic hormone.

- AHA : American heart association.

- Ala : Alanine.

- APO : Apolipoprotein.

- Arg : Arginine.

- Asp : Aspartate.

C -

- CAD : Coronary artery disease.

- cAMP : Cylic adenosinemonophosphate.

- cDNA : Complementary deoxyribonucleic acid.

- CE : Cholesteryl ester.

- CETP : Cholesteryl ester trasport protein.

- CHD : Coronary heart disease.

- CK : Creatine kinase.

- CNBr : Cyanogen bromide.

D -

- D.M. : Diabetes mellitus.

- DMPC : Dimyristoyl phosphatidyl choline.

E -

- EDTA : Ethylenediamine tetraacetic acid.

- EPA : Eicosapentanoic acid.

F -

- FFA : Free fatty acid.

- FH : Familial hypercholesterolemia

- FCH : Familial combined hyperlipidemia.

- FHT : Familial hypertriglyceridemia.

G -

- Glu : Glutamic acid.

- Gly : Glycine.

H-

- HDL-C : High-density lipoprotein cholesterol.

- His : Histidine.

- HMG-CoA: Hydroxy-methyl glutaryl coenzyme A.

- HTL : Hepatic triglyceride lipase.

I-

-IDL : Intermediate-density lipoprotein.

- IHD : Ischemic heart disease.

- ISA : Intrinsic sympathomimetic activity.

K-

- K : Kringle.

kD : Kilodalton.

L -

- LCAT : Lecithin-cholesterol acyl transferase.

- LDL-C : Low-density lipoprotein cholesterol : Leucine.

- Lp(a) : Lipoprotein (a).- LPL : Lipoprotein lipase.

- LYS : Lysine

N-

- NCEP : National cholesterol education program.

P-

- PHLA : Post heparin lipolytic activity.

R -

- RDA : Recommended dietary allowance.

S-

- Ser : Serine.

T-

- TC : Total cholesterol.

TG: Triglycerides.TSH: Thyroid stimulating hormone.

V_{-}

- Val : Valine.

- VLDL : Very-low-density lipoprotein cholesterol.

: Epsilon. 3

ACKNOWLEDGMENTS

"Aimez bien qui vous aime, aimez aujourd'hui vos parents, aimez votre mere, ce qui vous apprendra doucement à aimer la patrie notre mere à tous. Et-puis travaillez. Pour le present, vous travaillez à vous instruire, et quand vous avez bien travaille et quand vous avez contente vos maîtres, est - ce que vous n'êtes pas plus légers, plus dispos?"

V. Hugo.

In this sense, always I will be indebted and expressing my gratitude towards Dr. Mohamed Abd El-Adl El Sawi, assistant professor of genetics, Ain Shams University, and Dr. Karam Mahmoud Abd El-Aleem, assistent professor of genetics Ain Shams University for the great support, kind criticism and precious supervision all through the work.

I would also like to express my deepest respect and sincere gratitude to Dr. Manal Zaghloul Mahran, lecturer of clinical pathology, Ain Shams University, for the great effort, endless help and valuable advice without which the achievement of this work would be impossible.