TOWARDS THE REDEFINITION OF THE EGYPTIAN GEODETIC CONTROL NETWORKS:

GEOID AND BEST-FITTING REFERENCE ELLIPSOID BY COMBINATION OF HETEROGENEOUS DATA

by

التالت

Mohamed E. A. El Tokhey M.Sc. Civil Engineering

Less of the state of the state

A Dissertation

Submitted to the Department of Public Works, Faculty of Engineering, Ain Shams University

624.1517 M. F

For

The Degree of Doctor of Philosophy in Civil Engineering (Public Works -Surveying)

36228

Joint Supervision System Between
Ain Shams University and Graz University of Technology

Supervised by

Prof. DDDr. Helmut Moritz Section of Physical Geodesy Graz University of Technology Graz, Austria. Prof. Dr. Mohamed M. Nassar Department of Public Works, Faculty of Engineering, Ain Shams University Cairo, Egypt

Dr. Mohamed S. Hanafy
Department of Public Works, Faculty of
Engineering, Ain Shams University
Cairo, Egypt

Central Library - Ain Shams University

1993

THE EXAMINING COMMITTEE

Name : Mohamed El Hosseny Abdel Khalek El Tokhey

Thesis Title: Towards the Redefinition of the Egyptian

Geodetic Control Networks: Geoid and Best-Fitting Reference Ellipsoid by Combination of Heteroge-

neous Data

The Examining Committee

Name, title and affiliation

Signature

 Prof DDDr. Helmut Moritz Section of Physical Geodesy Graz University of Technology, Graz, Austria. T. Arig

- Prof. Dr. Hans Suenkel Section of Mathematical Geodesy and Geoinformatics Graz University of Technology, Graz, Austria.
- Prof Dr. Ahmad Abdel Sattar Shaker Surveying Department, Faculty of Engineering Zagazig University, Cairo, Egypt.
- Prof Dr. Mohamed Mohamed Nassar Public Works Department, Faculty of Engineering Ain Shams University, Cairo, Egypt.

The Author

Name : Mohamed El Hosseny Abdel Khalek El Tokhey

Date of Birth : 31-5-1957

Scientific Degree : M.Sc. Degree in Civil Engineering (Surveying) 1986

Date of Graduation: May 1980

Current Job : Assistant Lecturer, Faculty of Engineering, Ain Shams University

STATEMENT

This dissertation is submitted to Ain Shams University for the degree in civil Engineering (surveying)

The work included in this dissertation has been carried out by the author in the department of public works, Ain Shams University and the department of physical geodesy, Graz university of Technology from October 1988 to January 1993.

No part of this thesis has been submitted for any degree at any other university or institution.

Name : Mohamed E. A. El Tokhey

Signature:

Date : / / 1993

Abstract

The geoid is very essential for accurate geodetic position computations that can meet the requirements of recent geodetic applications such as monitoring earth's crustal movements and other disciplines related to earth dynamics.

The advent of the GPS has stressed the importance of the geoidal heights. By GPS positioning, it is now possible to determine accurate ellipsoidal heights. Therefore, accurate geoidal heights are necessary to convert these ellipsoidal heights to orthometric heights which are needed in most mapping applications.

The main aim of this dissertation is the determination of a geoid and a best fitting ellipsoid for Egypt using the available heterogeneous geodetic data. This geoid and the best fitting datum are steps towards the redefinition of the Egyptian geodetic control networks.

Least squares collocation is considered the most suitable technique for geoid determination from heterogeneous geodetic data. Therefore, this technique is used for the purpose of geoid determination in Egypt.

This dissertation can be divided into four main parts. The first part, chapters 1 and 2, contains an introduction and the theoretical background required for the computations using least

squares collocation.

The second part, chapter 3, deals with the geoid determination in Egypt from the available heterogeneous data. Two solutions for the geoid determination relative to the datum of the Geodetic Reference System 1980 (GRS80) and the Egyptian datum 1907 (EGD) have been performed. The two solutions give close results especially in the areas of dense data distribution. The accuracy of the predicted undulations is about 1 - 1.5 m.

The third part, chapter 4, includes a study for the requirements for determining a more accurate geoid for Egypt in the future. The effect of smoothing the gravity field by using the geopotential models or the terrain reduction has been outlined. A study for choosing the best geopotential model for recovering the available data has been performed and new geoid solution by referring the data to this model has been computed. For the current situation of the used data, the geopotential models do not improve the accuracy.

Also the effects of the data distribution, kind and accuracy of the predicted undulation standard errors has been investigated. Decreasing the gravity data spacing improves the accuracy until a certain limit. On the other hand, decreasing the GPS data spacing improves the accuracy without any limit, providing errorless geoidal heights.

Also a simulation study for improving the accuracy of the geoid in Egypt using additional fictitious data has been

presented. Five simulation solutions based on combining assumed additional gridded gravity anomalies and /or GPS undulations with the already available geodetic data have been performed. Having a gravity net with stations about 60 km apart and GPS undulations net with stations about 120 km apart can improve the accuracy of the predicted geoidal undulation to about 0.5 m.

The last part, chapter 5, deals with the problem of determining a best fitting datum for Egypt. The required mathematical formulas for datum transformations have been derived in exact as well as approximate forms. The mean of the differences between the exact and the approximate transformed undulations is about 0.04 m which can be neglected. Therefore, the required formulae for determining the best fitting ellipsoid have been given in spherical approximation forms.

Several solutions using either the undulation condition or the deflection condition or both have been performed for determining a best fitting datum for Egypt. The undulation condition gives the best results. Also, reorienting and repositioning the ellipsoid of the GRS80 gives the best values for the summation of squared undulations and squared deflection components. Therefore, this solution has considered as the best fitting datum for Egypt. The maximum undulation relative to this datum is about 9.0 m.

Acknowledgements

Firstly, I was very lucky to have this chance to do this work under the supervision of Professor Helmut Moritz. It is with gratitude that I acknowledge the support and encouragement given to me by him along many interesting, useful and stimulating discussions and for kindly allowing me to study at the Institute of Theoretical Geodesy, Graz University of Technology. His interest in the topic and constructive suggestions were invaluable.

Also, I wish to express my sincere thanks and ultimate appreciation to my supervisor Prof. Mohamed M. Nassar for his continuous guidance and helpful suggestions. His encouragement and interest were precious. I am very grateful to him for his active support and unlimited help.

My special thanks and respect are extended to Prof. Hans Sunkel for his help during my stay in Graz and for using his computer software library.

Also, I wish to express my gratitude and deepest thanks to Dr. Mohamed Hanafy for his unlimited help and valuable suggestions. His interest, discussions and advises were constructive and helpful.

I would like to extend my ultimate thank and appreciation to Dr. Osman Abou Beih for his help in making my stay in Graz possible.

Special thanks to my colleagues in Graz Dr. G. Kraiger, Dr. N. Kühtreiber and Dr. K. Rautz for their sincere help. Also my deepest thanks and gratefulness to Mrs. R. Hödl for her supportive assistance

Also, the staff of the Survey of Egypt Authority are gratefully acknowledged for providing me some of the used data.

Also, my deepest thanks to Prof. Ahmed Shaker and Dr. Dalal Al Nagar For Providing me some of the used gravity data.

I would like to depict my sincere thanks and appreciation to my wife for her patience, help and understanding.

Finally I dedicate this dissertation to my parents, wife, and daughters.

Contents

	Abstract	1
	Acknowledgements	iv
	List of Tables	xiv
	List of Figures	xvii
1.	Introduction	1
	1.1 The Role of the Geoid in Modern Geodesy	1
	1.2 Heterogeneous Data Used For Geoid Determination	5
	1.2.1 Gravity Measurements	6
	1.2.2 Astronomical Positions	8
	1.2.3 Doppler Positions	9
	1.2.4 GPS Positions	11
	1.2.5 Satellite Altimetry	13
	1.2.6 Harmonic Coefficients and Geopotential	
	Models	13
	1.3 Geoid Determination Techniques	14
	1.3.1 The Astrogeodetic Method	16
	1.3.2 Gravimetric method	17
	1.3.3 Satellite-Determined Positions Method	18
	1.3.4 Satellite Altimetry Technique	19
	1.3.5 Geoid From Geopotential Models	20
	1.3.6 The Astrogravimetric Technique	20
	1.3.7 Combining the Geopotential models and the	
	Gravity Data	22
	1.3.8 Combining all Available Geodetic Data	22
	1 A Wigton, of the Condetic Networks, the Could and	

		the Geodetic Datum in Egypt	23
	1.5	The Need of the Redefinition of the Egyptian	
		Geodetic Datum	27
2.	Mather	matical Formulations For Geoid Determination	
	Using	Least Squares Collocation	30
	2.1	Preparation of the Data Required for Geoid	
		Determination	30
		2.1.1 Determination of Gravity Anomalies	30
		2.1.2 Determination of the Astrogeodetic	
		Deflections of the Vertical	36
		2.1.3 Determination of the Geoidal Undulations	
		from the Satellite Positions	37
		2.1.3.1 Coordinate Transformation Models	38
		2.1.3.2 Solution and Comparison of the	
		Transformation Models	43
		2.1.3.3 Determination of Geoid Undulations	
		from Cartesian Coordinates	45
	2.2	Estimation of the Data Accuracies	46
		2.2.1 Accuracy of the Free Air Anomaly	46
		2.2.2 Accuracy of the Deflection of the Vertical	
		Components	4 7
		2.2.3 Accuracy of the Undulation Derived From	
		Satellite Positions	48
	2.3	Least Squares Collocation	50
		2.3.1 Basic Formulas	50
		2.3.2 Application of Collocation in Geoid	
		Determination	54
	2.4	Covariance Function	57

-viii-

		2.4.1 Basic Idea	57
		2.4.2 Empirical Covariance Function	59
		2.4.3 Local Characteristics of the Covariance	
		Function	61
		2.4.4 Modelling the Covariance Function	64
	2.5	Covariances Between the Different Quantities	
		Related to the Disturbing Potential	67
3.	Geoid	Solutions Using the Currently Available	
	Heter	ogeneous Data For Egypt	69
	3.1	The Available Data	70
		3.1.1 Gravity Data	70
		3.1.2 Astronomic Coordinates	72
		3.1.3 Doppler Positions	74
		3.1.4 GPS Observations	76
	3.2	Geoid Solution on the GRS80	78
		3.2.1 Determination of the Transformation	
		Parameters to the WGS84	78
		3.2.1.1 From the EGD to the WGS84	78
		3.2.1.2 From the WGS72 to the WGS84	82
		3.2.2 Peparing the data and Estimating their	
		Standard Errors	83
		3.2.2.1 Free Air Anomalies	83
		3.2.2.2 Deflection Components	86
		3.2.2.3 GPS Undulations	87
		3.2.2.4 Doppler Undulations	88
		3.2.3 The Used Data	88
		3.2.4 The Covariance Function	89
		3.2.5 Prediction of the Geoid Undulations and	

Deflection of the Vertical Components	94
3.3 Geoid Solution on The Egyptian Datum (EGD)	96
3.3.1 Data preparation on the EGD	101
3.3.1.1 Determination of the Gravity	
Anomalies	101
3.3.1.2 Determination of the Astrogeodetic	
Deflections	102
3.3.1.3 Determination of the Doppler and	
GPS Undulations	103
3.3.2 Prediction	105
3.4 Evaluation and Comparison of the Geoid Solutions	110
3.4.1 Differences Between the Predicted Signals	
From the Two Solutions referring to the	
Same Datum	111
3.4.2 The Standard Errors of the Predicted	
Quantities	113
3.4.3 Differences Between Predicted Values and	
Known Values	118
3.4.3.1 At Data Points	118
3.4.3.2 Differences at Check Points	120
4. Practical Considerations for a Better Egyptian	
Future Geoid.	123
4.1 Introduction	123
4.2 Smoothing the Gravity Field using a Geopotential	
Model	125
4.2.1 Representing the Gravity Field by a	
Spherical Harmonic Expansion	127
4.2.1.1 Practical Determination of the	

	Disturbing Potential Components	
	From the Spherical Harmonic	
	Coefficients	129
	4.2.2 Residual Anomalous Potential	132
	4.2.3 Modeling the Residual Anomalous Potential	
	by Collocation	133
4.3	Smoothing the Gravity Field Through Terrain	
	Effect Removal	134
4.4	Effect of Data Spacing, Kind and Accuracy on the	
	Standard Error of the Predicted Undulation	139
	4.4.1 Effect of Data Spacing	139
	4.4.2 Effect of the Data Kind	142
	4.4.3 Effect of the Data Accuracy	145
	4.4.4 Effect of the Distance Between Data and	
	Prediction Points	148
4.5	A Geoid Solution by Smoothing the Available	
	Data in Egypt by a Geopotential Model	150
	4.5.1 The Choice of the Used Geopotential Model	152
	4.5.2 Differences in the Undulations Obtained	
	from Different Geopotential Models in	
	Egypt	158
	4.5.3 Modelling the Residual Observations by	
	Collocation and Determining the Final	
	Results	161
	4.5.4 Evaluation of the Resulting Geoid	163
4.6	Simulation Study for Improving the Geoid	
	Accuracy In Egypt	167
	4.6.1 Introduction	167
	4 6 2 The Simulation Solutions	160