

Ain Shams University Faculty of Engineering

Computer-Aided Design

for

Distributed Database Systems

Ву

Hoda Korashy Mohamed

A Thesis

Submitted in fulfillment of the requirements of the Degree of PH.D.

in Electrical Engineering

(Electronics and Computer)

the strong

Supervised By

Prof. Dr. M. Adeeb R. Ghonaimy

~\35°

Prof. Dr. Osman A. Badr

Cairo (1992)

Examiners Committee

Name , Title and Affiliation

Signature

- 1- Prof. Dr. R.A. Amer
 Prof. at King Abdeel Aziz
 University, Saudi Arabia.
- 3- Prof. Dr. M.A.R. Ghonaimy
 Prof. at Ain Shams University,
 Egypt.

M.A. R. Shonging

Date: 10 / 3 / 1992

STATEMENT

This dissertain is submitted to Ain Shams University for the degree of PH.D. in Electrical Engineering (Electronics and computers).

The work included in this thesis , was carried out by the author in the Department of Faculty of Engineer, Ain Shams University , from 2/1986 to 3/1992 .

No part of this thesis has been submitted for a degree or a qualification at any other university or institution .

Date : 3 /1992

Name : Hoda Korashy Mohamed

Signature : Hoda Korashy

ACKNOWLEDGMENT

I would like to express my limitless gratitude to **Prof. Dr. M.A.Ghonaimy** for his invaliable advices, supervision and guidance throught the research.

I am also grateful to Prof. Dr. O.A.Badr for his patient guidance and continuing encouragement.

I would like also to thank all my collegeous, espicially Eng. Mona Fahmy, for their help and encouragement.

Finally, I would like to acknowledge the encouragement and support shown by my husband and my mother.

ABSTRACT

A comparative study for the design of distributed database has been done. The design of distributed database, may be divided into four phases, each has its own techniques and tools.

A proposed system is applied to design the distributed database system. The proposed system (DBDSG) is a semiautomated methodology which covers all the design steps. It is divided into two parts.

DBDSG-1 system is a menu driven system to facilitate the interface with designers. Data are represented using Extended-Entity Relationship model [EERM]. View integration is applied if more than one view exists. The system transforms the EERM into a relational data model which is the data model required for the next phase of the design. Analysis of the important transactions is applied, to develop all possible partitioning of objects and the access path for each transaction .

In DBDSG-2 system, a model is proposed for the nonreplicated allocation of data over the sites of the computer network. A modified model is presented to modify some of the constraints in the original model. Zero/one implicit enumeration algorithm is used to solve the allocation problem. For replicated allocation of data, a heuristic postoptimization of the optimal solution without replication is applied. An analysis of the results of the allocation model proposed with the effect of different parameters is also discussed. The parameters which affect the allocation model are the cost parameter such as transmission cost and the access cost of the computers at each site. The load of transactions at each site has a pronounced effect in the allocation problem.

TABLE OF CONTENTS

1	IN	$\mathbf{T}\mathbf{R}$	OD	UCT	Ι	ON
---	----	------------------------	----	-----	---	----

1.1	What is meant by Distributed Database?	1
	Features of Distributed versus Centralized Database	2
	Distributed Database Design	3
		£
1.4	Computer-aided design tools	_
1.5	Organization of the thesis	7
2 1	DATABASE DESIGN	
2.1	Database Design Criteria	9
2.2	Database design inputs and outputs	10
	2.2.1 Inputs to database design	1 3
	2.2.2 Outputs from database design	12
2.3	Database Design Phases	12
2.4	Requirement Formulation and Analysis	13
	2.4.1 Capturing Requirements to Database Design	13
	2.4.2 Requirements definition and specification	15
	2.4.3 Requirement Validation	20
2.5	Conceptual Design	23
	2.5.1 View Modeling	23
	2.5.2 View Integration	33

2.6 Logical Design	42
2.6.1 The translation process	43
2.6.2 Overview of systems implemented to support logical design	45
2.7 Physical Design	46
3 Data Distribution Design	
3.1 Objectives of the design of data distribution	49
3.2 Parameters that affect the design of Data Distribution	50
3.2.1 Type of distributed Database Management System (DDBMS)	50
3.2.2 Database Schema	51
3.2.3 Types of Computer Networks	51
3.2.4 Transactions (Application Requirements)	5 <i>2</i>
3.2.5 Computers connected at each site	5 <i>3</i>
3.3 Fragmentation Design	54
3.3.1 What is meant by fragmentation	54
3.3.2 Fragmentation Types	54
3.3.3 Horizontal Fragmentation	55
3.3.4 Vertical Fragmentation	61
3.4 Allocation Problem	64
3.4.1 Allocation model approaches	64
3.4.2 General Criteria for Fragment Allocation	65
3.4.3 Overview of the allocation problems	66

4 The Proposed Model (DBDSG)

4.1	DBDSG-1 : Designing global schema	76
4.2	View modeling	77
	4.2.1 Why Extended Entity-Relationship Model (EERM) ?	77
	4.2.2 Entity-Relationship model (ERM)	78
	4.2.3 Extended Entity-Relationship Model (EERM)	80
	4.2.4 EER modeling of requirements	83
	4.2.5 User-defined Constraints	86
	4.2.6 View modeling in DBDSG-1 System	87
4.3	View Integration	99
	4.3.1 Preintegration phase	100
	4.3.2 Comparison and Conforming phases	102
	4.3.3 Merging and Restructuring Phase	106
4.4	Logical Design	108
	4.4.1 Step 1: Transformation of the EERM to relations	108
	4.4.2 Step 2: Normalization of Relations	111
4.5	Pransaction modeling	119
5 I	ata Allocation Model (DBDSG-2)	
5.1	Nonreplicated model (the original model)	124
	5.1.1 Inputs to the model	124
	5.1.2 Assumption and Simplification	139
	5 1 2 Objective function	120

	5.1.4	Const	traint	s.	•						•	•	٠	•				•	142
	5.1.5	Coefi	ficien	t Ev	alu	atio	on .												143
	5.1.6	Algoi	rithm																151
5.2	The Mod	dified	d Mode	1.															159
	5.2.1	Const	raint	s.															160
	5.2.2	Objec	ctive	func	tio.	n.													163
5.3	Design databa		parti	ally · ·	re.	plio	cate	ed d	lis:	tri.	but •	:10	<i>מ</i>	of	t.	he •	•		165
	5.3.1	Assum	nption		•				•										165
	5.3.2	Evalu	ation	of	Pro	ces:	sinç	Co	st	5 0	f a	3 T	ra	ns	ac	ti	or	2	169
	5.3.3	Algoi	rithm						•										172
6 1	RESULTS	AND F	MALYS	is o	F T	HE I	ALLC	CAI	101	N M	ODI	3L							
		_	aifia	a + i o	ne														101
6.1	Example	s Spe	-C111C	acio	113		- •	•	•	-	•	-	-	•	•	•	•	•	181
	Example Nonrepl	_																	181
	Nonrepl	licate		el .											•				
	Nonrepl	licate Cost	ed Mod Param	el . eter	s				•										187
6.2	Nonrepl	licate Cost Load	ed Mod Param of Tr	el . eter ansa	s cti	 ons			•	•									187 187
6.2 6.3.	Nonrepa 6.2.1 6.2.2	licate Cost Load	ed Mod Param of Tr of th	el . eter ansa e im	s cti	 ons cit		umer	· · ·	ion									187 187 209
6.2 6.3.	Nonrepa 6.2.1 6.2.2 The en	licate Cost Load	ed Mod Param of Tr of th	el . eter ansa e im	s cti	 ons cit		umer	· · ·	ion									187 187 209 211
6.2 6.3.	Nonrepa 6.2.1 6.2.2 The en	licate Cost Load ffect	ed Mod Param of Tr of th	el . eter ansa e im mode	cti pli	· · ons cit		umer	· · ·	ion									187 187 209 211
6.2 6.3 6.2	Nonrepa 6.2.1 6.2.2 The en	licate Cost Load ffect eplica	ed Mod Param of Tr of th	el . eter ansa e im mode	cti pli	· · ons cit		umer	· · ·	ion									187 187 209 211
6.2 6.3 6.2	Nonrepa 6.2.1 6.2.2 The end The Re	licate Cost Load fect eplica CON AN	Param of Tr of th ation	el. eter ansa e im mode THER	s ctic pli:	ons	ent		at:	ion		!go	.ri						187 187 209 211 220

7.2 Further Work	231
7.2.1 Expert Systems	
7.2.2 Object-Oriented Databases	232
APPENDIX A: An Example Applied to the Proposed system (DBDSG)	
PEPRENCES	

CHAPTER 1

INTRODUCTION

1.1	What is meant by Distributed Database?	•	•	•	1
1.2	Features of Distributed versus Centralized Database			•	2
1.3	Distributed Database Design		•	•	3
1.4	Computer-aided design tools		٠	•	5
1.5	Organization of the thesis				7

CHAPTER 1

INTRODUCTION

1.1 What is meant by Distributed Database?

A typical definition of a distributed database is :

" A distributed database is a collection of data which are distributed over different computers forming a network. Each site of the network has autonomous processing capability and can perform local applications. Each site also participates in the execution of at least one global application, which requires accessing data at several sites using a communication subsystem" [CERI84].

The definition emphasizes two important aspects :

1- Distribution

Distribution means the fact that the data are not resident at the same site. That will distinguish a distributed database from a single centralized database.

2- Logical correlation

The fact that the data have some properties which tie them together is one of the characteristics of distributed databases, which are different from a set of local databases residing at different sites of a computer network.

1.2 Features of Distributed versus Centralized Database

1- Centralized Control

In a centralized database, database administrator DBA is responsible for the safety of data. In a distributed database, there is a global database administrator who has the central responsibility of the whole database, and local database administrators who have the responsibility of their respective local databases. But local DBA may have a high degree of autonomy so the global DBA is completely missing and the intersite coordination is performed by the local administrators.

2- Data independence '

pata independence means that the actual organization of data is transparent to the users. In centralized databases, this was achieved by conceptual schema. In distributed databases, we have distribution transparency which means that users see the databases as if they were not distributed.

3- Reduction of redundancy

In centralized databases, redundancy is reduced as far as possible by using data sharing that means allowing several applications to access the same files and records. In distributed databases, there are several reasons for considering data redundancy as a desired feature:

- a- To increase site locality of applications.
- b- The availability of the system can be increased.

4- Complex physical structures and efficient access

In centralized databases, complex physical structures are a major aspect for efficient access to the data. In distributed