Ain Shams University Faculty of Engineering

Query Optimization For Distributed DataBase Systems

 $\boldsymbol{B} \mathbf{y}$

Mona Ahmed Fahmy Abdel Baky

A Thesis

Submitted in fulfilment of the requirements of the degree of PH.D.

In Electrical Engineering

(Computer and Systems Engineering)

Supervised By

Prof. DR. M. Adeeb R. Ghonaimy

Prof. DR. Osman A. Badr

CAIRO (1992)

Examiners Commitee

Name, Title and Affiliation

Signature

and the second of the second o

- 1. Prof.DR. R.A. Amer Prof. at King Abdel Aziz University, Saudi Arabia
- 2. Prof.DR. F.H.Saleh
 Prof. at Cairo University,
 Egypt
- 3. Prof.DR. M.A.R. Ghonaimy
 Prof. at Ain Aham University,
 Egypt

Mint of third oring

Date: 25/4 /992

Statement

This dissertain is submitted to Ain Shams University for the degree of PH.D. in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis, was carried out by the auther in the Depertment of Computer and Systems Engineering, Faculty of Engineering, Ain shams University from 11/1/1986 to 24/2/1992.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution

Name: , real real of the first first

Signature :

Acknowledgement

It is hard to express my gratitude to Professor Dr. M. Adib Ghoneimy for his invaluable advice, guidance, and supervision through his ever-flowing information represented in references, text books, and papers, and his comprehensive and constructive comments which were great provisions that helped me to achieve my goal and complete my work.

I would like also to express my sincere thanks to Professor Dr. Osman Badr for his support during my research, and encouragement that helped me to carry on through critical moments.

Also, I would like to thank my colleagues; especially Eng. Hoda Korashy for her sincere cooperation and the mutual technical constructive discussions that helped a lot, and to Dr. Hassan Shehata for his aid in facilitating and providing for me resources, especially in critical times.

Finally, I would like to express my deepest feelings of gratitude to my whole family, especially my mother, my husband, and my son and daughter.

Abstract

Most of the work done in this area give a good sequence or a close to optimal sequence for join queries, by using heuristics based on the semi-join operations. Most of these algorithms are implemented for a certain environment and can not solve the whole problem. Other works use dynamic programming, this approach is only good when queries reference a small number of relations because the search space becomes large quickly as the number of relations increase. In fact this rapid growth of the search space limits the usefulness of dynamic programming.

The suggested work is based on using an A^* algorithm which is a known heuristic search technique in Artificial Intelligence. In A^* algorithm the solution can be found without necessarily having to compute the cost of all states or even having to construct them.

The suggested work has been designed to cover the following:

- 1. Selecting one copy of each relation referenced by the query.
- 2. Elimination of sending unnecessary relations to assembly site.
- 3. Constant and variable Communication cost between sites, and local processing costs.

Simulation has been utilized to study the effect of the following parameters on response time of the query:

- 1. Input parameters, such as, rate of queries, and distribution of queries among sites.
- 2. System parameters, such as, communication channel capacity and protocols, and computers.
- 3. Configuration parameters, such as, allocation of relations.

Table Of Contents

CHAPTER	1:Thesis Objective And Overview	1
CHAPTER	2:Query Processing Optimization In	
	Distributed DataBase Systems	3
		4
	2.2. Computer Network	6
	2.3. Queries	20
	2.4. Relational Algebra Operators	17
	2.5. Distributed Database	25
		32
	2.7. Factors Affecting The Query Processing	
	Optimization	3 6
	2.8. Join-Query Processing Optimization 3	39
	2.9. Database Machine	12
	2.10. Multiple Query	17
משושם גיש	3:Models Of Distributed DataBase For	
CHAFIER		51
		52
	3.2. The Transformation Approach	58
		50
	5.5. Into Indbeb	52
	3.5. Fragment Processing	54
	3.6. Optimal Strategy For Simple Queries	57
	3.7. Heuristics Algorithms Based On Semi-joins 68	3
	3.8. Query Processing Optimization Using Algorithms	
	Based On Joins	32
	3.9. Query Processing Optimization Using Dynamic	
	Programming	37
CHAPTER	4:Suggested Model For Query Processing Optimization Of	
		33
	··-·	94
	4.2. A - Optimal search For An Optimal	
	Solution	9
	4.3. A Heuristic Function h Developed For The	. ~
	Suggested Model	
	4.4. Suggested Method	
	4.5. Illustrative Examples	
	4.6. Computer Outputs Of Suggested Method 12	:3
CHAPTER5	:Sensitivity Analysis of Query Processing	
	Optimization In Distributed DataBase Systems 12	
	5.1. Why Simulation	
	5.2. Simulated Model	
	5.3. Confidence Level	
	5.4. NETWORK II.5	
	E 5 The Posults Of Sensitivity Analysis 13	39

CHAPTER																									172 172
																									174
REFERENC	ES:	•	•	•	•	•	•	•		•	•		•	-	•	•	•	-	•			•	•	- ·	175
<i>APPENDIX</i>	A:	-		٠	•	•		•	•	•		•	-	•		-	•	•	•	•	•	•	-	-	A/J
APPENDIX	B:						٠																		B/J

Thesis Objective And Overview

Distributed databases are important for economical, organizational and technological reasons. They can be implemented in large geographical computer networks and in small local networks. The number of applications of distributed databases will grow in the next years, as distributed database management systems will become available.

Distributed database technology extends traditional database technology in a nontrivial way. In this environment, several technical problems require different solutions, and several completely new issues arise.

This research is concerned with the problem of query processing optimization in distributed database. The goal of query optimization is to find an execution strategy which minimizes the cost of a query, given by the sum of the transmission costs and of the local processing costs. Depending on the characteristics of the communication network and of the local systems, local processing costs can be disregarded in the optimization of the execution strategy of the query. This is typically the case of large geographical networks with low bandwidth, which have transfer rates

of an order of magnitude lower than the disk-to-memory transfer rate. On the Contrary, for fast local networks local processing costs must be considered.

Most of the work done in this area gives a good sequence or a close to optimal sequence for join queries, by using heuristics based on the semi-join operations. Most of these algorithms are implemented for a certain environment and cannot solve the whole problem. Other works use dynamic programming, this approach is only good when queries reference a small number of relations because the search space becomes large quickly as the number of relations increase. In fact this rapid growth of the search space limits the usefulness of dynamic programming.

The suggested work is based on using \mathbf{A}^{\star} algorithm which is a known heuristic search technique in Artificial Intelligence. In \mathbf{A}^{\star} algorithm the solution can be found without necessarily having to compute the cost of all states or even having to construct them.

This thesis is organized as follows:

- Chapter 2 discusses the aspects of databases and computer networks that are required in order to understand the rest of the thesis. It also discusses the query processing optimization in distributed database systems.
- Chapter 3 illustrates the formulation of the query processing optimization problem and the different models of distributed database for query processing optimization.
- Chapter 4 is concerned with the suggested model for query processing optimization in distributed database.
- Chapter 5 studies the sensitivity analysis of query processing optimization in distributed database. The study is done using simulation techniques. NETWORK II.5 version 3 is the simulation package used.
- Chapter 6 concludes the thesis and points to further work.

CHAPTER	2:Quef	y Processing Optimization In cributed DataBase Systems	-
	DISC	cributed DataBase Systems	3
	2.1.	Database Models	4
	2.2.	Computer Network	6
		2.2.1. Types of Communication Network	6
		2.2.2. Network Architectures	8
	2.3.	Queries	10
		2.3.1. Query Lanquage Types :	10
		2.3.2. Query Classification	13
		2.3.3. Tree Queries Versus Cyclic Queries .	14
	2.4.	Relational Algebra Operators	17
		2.4.1. Definition of Relational Algebra	
		Operators	17
		2.4.2. Estimation of Relational Algebra	
		Operators	18
	2.5.	Distributed Database	25
		2.5.1. Data distribution	25
		2.5.2. Distributed Database	
		Classification	27
		2.5.3. Fragmentation	28
			31
		2.5.5. Data Dictionary	31
		2.5.5. Data Dictionary	J 1
	2.6.	Framework For Query Processing Optimization	32
		2.6.1. Query Processing Optimization	
		Objectives	32
		2.6.2. Query Processing Optimization	
		Problems	34
	2.7.	Factors Affecting The Query Processing	
		Optimization	36
		2.7.1. Communication Networks And Query	
		Processing Optimization	36
		2.7.2. Computer Hardware And Query Processing	
		Optimization:	36
		2.7.3. Database And Query Processing	
		Optimization:	37

2.8.	Join-Query Processing Optimization			•	39
	2.8.1. Algorithms which use semi-joins				40
	2.8.2. Algorithms which use joins	•	•	•	41
2.9.	Database Machine	•		•	42
2.10	Multiple Ouerv				17

Query Processing Optimization In Distribution DataBase Systems

The collection of data is usually referred to as the database. The DBMSs are designed to improve the productivity of application programmers and facilitate data access by computer end users. The database that is stored on, or manipulated from one computer only is called a centralized database, while if the database is resident in, or manipulated from several computers, it is called a distributed database.

A language expression used to enable users to retrieve data from a database is called a query. When a query is presented to the system, it is necessary to find the best method of finding the answer using the existing database structure. There are a large number of possible strategies for processing a query, especially if the query is complex. The goal of this research is the query processing optimization in distributed databases.

In this chapter, first, I will review the data models, the basic concepts about computer networks, queries, relational algebra operators, and distributed databases. Then, I will talk about the framework for query processing optimization, and factors affecting it. Then, I present the optimization of Join-Query. Finally, I will talk about special problems of the database machine, and multiple query processing optimization.

2.1. Database Models:

The database models are used in describing data at the conceptual and view levels. There are three database models.

Relational model:

The data and the relationships among data are represented by a collection of tables each of which has a number of columns with unique names. Figure 2.1 is a sample relational database. For more details about relational model and its normal forms (first, second, third, boyce/codd, fourth, and fifth normal forms) see [DATE74], [MART75], [KRON77], and [DATE86].

Name	Street	City	Number
Lowery	Maple	Queens	900
Shiver	North	Bronx	556
Shiver	North	Bronx	647
Hodges	Sidehill	Brooklyn	801
Hodges	Sidehill	Brooklyn	647

Number	Balance
900	55
556	100000
647	105366
801	10533
001	10333

Figure 2.1
A sample relational database.

Network model:

Data in the network model are represented by a collection of records and relationships among data are represented by links, which can be viewed as pointers. The records in the data base are organized as collections of arbitrary graphs. Figure 2.2 is a sample network database that has the same information as in