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Abstract

Moshref, Ola Ahmed. Studies on Some Optical Properties of Fibers Used in
Optical Communication. Unpublished Master of Science dissertation, Ain-

Shams University, Physics Department, 1996.

Multiple-beam Fizeau fringes across a step-index fiber immersed in a
silvered liquid wedge have been studied in transmission and at reflection.
Investigations of the factors affecting the multiple-beam fringe shape have been
carried out with emphasis on the wedge angle of the interferometer, the refractive
index difference between the liquid and clad, and the index gradient between- the
corc and clad.

Modified expressions have been derived to investigate the eflect of
refraction at the liquid/clad and clad/core interfaces on the shape and magnitude
of the fringe shift. The resulting corrections in the core and clad refractive indices
are found to be 107 and 107 respectively when the refractive index difference
between the liquid and clad is less than 1073, These expressions bave been
applied to the determination of the index-profile of monomode fibers from

experimental measurements.

Keywords: Multiple-Beam Fizeau Fringes. Fiber Optics. Monomode Step-Index
Fiber. Multimode Step-Index Fiber. Index Profile.




Summary

This thesis consists of five chapters. The first chapter is an introduction
to the composition and characteristics of step and graded-index fibers. It outlines
previous work in interferometric measurements of the refractive index of .optical
fibers.

In Chapter II, the modal equation for step-index fibers is derived starting
from Maxwell’s equations. Expressions for basic mode parameters such as
normalized cutoff frequency and total number of modes are obtained. The impact
of these parameters on the bandwidth, dispersion, and attenuation of optical
waveguides is discussed.

Multiple-beam Fizeau fringes are studied in Chapter 1H, both in a
parallel-piate interferometer and a silvered wedge. For the latter case, optimum
conditions on the wedge angle and interfetometric gapthickness for the formation of
fringes are studied in detail. Expressions for determining the refractive index-
profile of a step-index fiber immersed in a liquid wedge are derived. The effect of
the refractive index difference between the liquid and clad, and between the core
and clad on the fringe shape are thoroughly discussed. A novel method for
determining the wedge angle from interferometric measurements is presented.

Chapter IV deals with the phenomenon of fringe discontinuity at the
liquid/clad and clad/core interfaces. The variation of light intensity at different
points on the fiber cross-section calculated from Fresnel equations are plotted to
account for the drop of transmitted intensity at the interfaces. Hence, refraction
at the interfaces is considered, new expressions describing multiple-beam Fizeau
fringes across a step-index fiber immersed in a liquid wedge are derived, and the
modification in the fringe shape is investigated.

Chapter V presents the experimental setup, pfocedure, and results.
Applying the expressions of Chapters III and IV, index-profiles of monomode

fiber samples immersed in liquids of different refractive indices are compared




vi

showing a slight difference in behavior near the liquid/clad and clad/core
interfaces when the correction in the clad and core refractive indices due to

refraction effects is taken into consideration.
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