

STUDIES ON THE UTILIZATION OF SOME NEW SOURCES OF FEEDSTUFFS IN RATIONS FOR RUMINANTS

By

MOHSEN MAHMOUD SHOUKRY

B.Sc. (Agric. Animal Production). 1972, Ain Shams University

Thesis Submitted

To

The Faculty of agriculture Ain Shams University

In

Partial Fulfillment of the Requirements

For The Degree of

MASTAR OF SCIENCE

Animal Nutrition)

1978

Animal Nutrition Section

Animal Production Department

Faculty of Agriculture, Ain Shams University

APPROVAL SHEET

STUDIES ON THE UTILIZATION OF SOME NEW SOURCES OF FEEDSTUFFS IN RATIONS FOR RUMINANTS

BY

MOHSEN MAHMOUD SHOUKRY

Thesis Submitted for the M. Sc. Degree

Approved by:

M.K. Hattout

Committe in Charge

Date : 2// 6/1978

RESUME

Name

: Mohsen Mahmoud Shoukry

Birth date

: 12 . 9 . 1950

Mationality

: Egyptian

Present work

: Assistant Researcher, Animal and Poultry Nutrition Laboratory, National Research Centre, Dokki,

Cairo.

Qualification

: B.Sc. (Agric. Animal Production) 1972, Ain Shams University.

Field of interse : Ruminant nutrition.

ACKNOW LEDGEMENT

and the second of the second o

The author wishes to express his appreciation and gratitude to Dr.M.A. El Ashry, Professor of Ruminant Mutrition, Anim.Prod. Dept., Fac. of Agric., Ain Shams Univ.; Dr. A.M. El Serafy Associate Professor of Ruminant Mutrition in the same Department and Dr. S.M. Allam, Associate Professor of Ruminant Mutrition, Animal and Poultry Mutrition Lab., National Research Centre, Dokki, Cairo, for suggesting the problem and their close supervision. Their continuous guidance and encouragement are greatly appreciated.

The author would like also to recored his special dept to Dr. A.M. El-Serafy for his fruitful assistance and advice which were valuable during the study and preparation.

Finally the author deeply appreciates sincere help kindly offered by the staff members of the two Departments.

CONTENTS

AND THE RESERVE OF THE PROPERTY OF THE PROPERT

	P age
INTRODUCTION	1
REVIEW OF LITERATURE	2
1. Description of the plant	2
2. The history and advent of Eichhornia to	
the Nile	3
3. Productivity of water hyacinth (E.cras-	
sipes)	5
4. Palatability by ruminants, of water	
hyacinth	8
5. Methods of processing water hyacinth	11
Partial dewatering and drying	11
Ansiling procedures and silage additives	15
6. Classification of processed water hyacinth	
products	21
7. Chemical composition of fresh and proce-	
ssed water hyacinth	23
Proximate composition	23
Mineral composition	31
8. Intake and nutritive value of fresh and	
proce sed water hyacinth	33
Digestibility and animal performance	38
9. Mutrients in water hyacinth that make it	
a hazaru feed for livestock	43

	Page
MATERIALS AND METHODS	46
1. Collection and processing of water hyacin-	
th plants	46
1.1. Collection of plants	46
1.2. Processing of the plants	47
2. Chemical analysis of water hyacinth hay.	48
3. Digestibility trial and nitrogen balance.	50
3.1. Rations used	51
3.2. Animals and management	52
3.3. Usine and feces collection	53
3.4. Analytical methods	53
4. Feeding growing sheep on rations with	
different levels of water hyacinth hay	54
4.1. Animals	54
4.2. Rations used	55
4.3. Management	55
5. In Vitro study on water hyacinth may	58
5.1. Animals and rations	58
5.2. Collection of rumen liquor	58
5.3. Sampling and combinations of subs-	
trates used	59

·	
	Page
5.4. The In Vitro technique used	60
5.5. Time of incubation and addition of	
pepsin	61
6. Statistical analysis	62
RESULTS AND DISCUSSION	64
Chemical composition	64
Digestibility and mitrogen balance	70
Sheep performance	78
In Witro study	36
SUMMARY AND CONCLUSIONS	98
REFERENCES	101
ARABIC SUMMARY	

LIST OF TABLES

Table	No.	Page
ı	Rations with different levels of water	
	hyacinth hay fed to the experimental	
	sheep	51
2	The daily amounts (g) of the three	
	rations offered to the three groups of	
	Rahmany lambs during the testing stage	
	(12 weeks)	<i>5</i> 7
3	Chemical composition of different parts	
	of WHH and feedstuffs used in the	
	emperiments	65
4	lineral composition and tannins content	
	of different parts of water hyscinth	
	hay (DM basis)	66
5	Nutritive value of water hyacinth-bay	
	(WHL) in mixtures of feedstuffs (result	
	of the digestion trial)	71
6	Results of nitrogen balance when water	
	hyacinth hay (WHH) was fed in mixtures of	
	feedstuffs	72

l'able	20.	Page
7	AROVA for digestion coefficients and	7
0	N-balance	73
8	Average food intake of sheep receiving	
	rations containing different levels of	
	water hyacinth-hay (WHH)	79
9	average daily gain and feed efficiency	
	of sheep receiving rations containing	
	different levels of water hyacinth	
	bay (WHE)	81
10	ANOVA for average daily gain of sheep	
	receiving rations containing different	
	levels of water hyacinth hay	53
11	IVDMD (%) of water hyacinth-hay	87
12	AROVA or FVDLE of water hyacinth-hay,	
	using different types of mumer liquors	,
	substrates and times of incubation	91
13	Effect of pepsin on INTED of water	
	ayacinth hay	93
14	ANOVA for the effect of pepsin additi	on
	to the media of IVDMD of water hyacint	h
	hay	9 /1

LIST OF FIGURES

Fig.	No.	Page
1	Change in weights of Rahmany lambs fed different levels of water hyacinth hay	82
2	IVDMD of water hyacinth hay as affected by type of rumen liquor and time of incubation.	88
3	IVIAL of water hyacinth hay as affected by substrate and time of incubation	89
4	IVDMD of water hyacinth hay as affected by substrate (affer 72 hr incubation with and without pepsin added)	95
5	TIDAD of water hyacinth hay as affected by type of rumen liquor (affer 72 hr incubation	
	with and without pepsis added)	96

INTRODUCTION

In contrast to the normal situation in most countries, the price of roughages in Egypt is exceptionally higher than that of the concentrates. Therefore, intense efforts should be directed toward the search for new non-classical kinds of roughages.

A huge amount of water hyacinth plants are found in several types of waterways and they are controled usually, by mechanical means. Like wise in some other countries, water hyacinth plants should be processed as hay, haylage or silage, to be used as an economical roughage for runinants. It was decided therelore, to evaluate the nutritive value of rations containing different levels of water hyacinth hay as a new source of roughage for runinants.

REVIEW OF LITERATURE

1. Description of the plant.

water hyacinth (Eichhornia Crassipes Solms) is one of numerous aquatic plants. It is a large freefloating plant with attractive lavender flower and shiny bright-green leaves on long petioles. The plants are found mainly in ponds and slow flowing streams, they are normally free-floating but, if stranded by receding water, will root in mud and survive. Uncrowded plants, particularly in shallow warer and full sunlight, have bulbular float petioles about 8 inches long, whereas crowded plants produce elongate petioles up to 50 inches long (Fenfound and Earle, 1948). They also suggested the following plant size classes: midget, small, medium, large and gaint; the midget being rooted on land, small being in full flower in shallow water, medium existing in still water often profusely flowered, large and waint sizes thriving in moving, well-areated water of canals or open expanses. The latter are distinguished by elongated, equitant leaves up to 50 inches long with float leaves being non-existent.

2. The history and advent of Eichhornia to the Nile.

grafin to the Committee of the Committee

The water hyacinth has become a serious menace in many countries of the world. It has spread from the American tropics and assumed a largely pan-tropical distribution (Robertson and Ba Thein, 1932; Simpson, 1932; Jepson, 1932; Bose, 1945; Parham, 1947; Bouriquet, 1949; Vaas and Sachlan, 1949; Tackholm and Drar, 1950; Meadly, 1953; Robyns, 1956; Bates and Phipps, 1958; Mendonca, 1958; Gay, 1958, 1960 a and b; Allsopp, 1960; Chadwick and Obeid, 1966; Bock, 1969; nold et al., 1969).

Tackholm and Drar (1950) reported that the plant was introduced to Egypt during the reign of Khedive Tawfiq (1879 - 1892). Percheron (1903) mentioned the cultivation of Eichhornia crassipes in the ponds of public gardens at that time and warned against the dangers of the spread of this water pest in Egyptian canals. Inirty years later, Simpson (1932) write "In Egypt the plant is near Cairo, Alexandria, Damanhour,

Damietta and near Bilbis to Lake Manzala where it is a serious pest in Bahr El-Bagar drain system. There is also a stretch of it at the mouth of Bahr Hadus. It is found in fresh and brackish water but is killed by sea water, from the above distribution it seems fairly clear that the plant has spread from cultivation in towns." He also reported at the present time the water ayacinth is so localized in Baypt that it can be dealt effectively by manual labour supported by strictly enforced legislation. Every year, delay makes this less possible on account of large areas becoming contaminated. This has became the present situation. It is very rare to find a water habitant in Egypt, particularly in the delta, not menaced by Eichhornia crassipes. Floating islands of the weed are common in the Nile at Cairo, particularly maring summer months. These floating mats drift northward with the current, and accumulate in the northern reaches of the Nile and completely cover the water surface, especially in the Damietta branch which is closed by an earthen dam (Batanouny and El-Fiky, 1975).