189 84/1

Ain Shams University
Faculty of Engineering

MICROCOMPUTER APPLICATIONS IN SCENE MATCHING

By Downed

Eng. Esam Mostafa M. Abdel-Raheem

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of M.Sc.

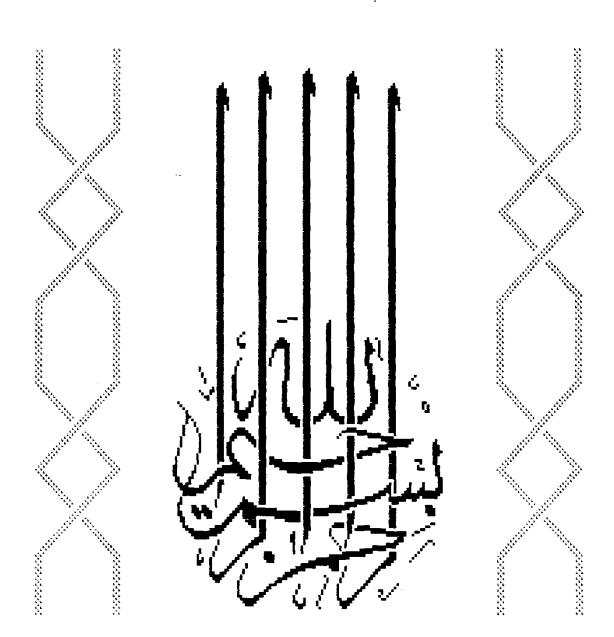
(21.3819582

in Electrical Engineering

E. 1

Prof. Dr. Safwat

Supervised by


Ain Shams University

Prof. Dr. Attia A. Shahin

Military Technical College

27809

Cairo - 1988

Examiners Committee

Name, Title & Affiliation

Signature

1 - Prof. Dr. Abdel-Wahab Fayez Cairo University.

2 - Prof. Dr. Nabil M. Abdel-Maksoud Al-Nady Military Technical College.

3 - Prof. Dr. Attia A. Shahin Military Technical College.

4 - Prof. Dr. Safwat Mahrous Mahmoud Ain Shams University.

Attio A. Shohim

Date: 29//2/1988

Statement

This dissertation is submitted to Ain Shams University for the degree of M.Sc. in Electrical Engineering.

The work included in this thesis was carried out by the author in the department of Electronics and Computer Engineering, Ain Shams University, from October 1985 to December 1988.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : 29 / 12/1988

Signature : Esam Mostafu

Name : Esam Mostafa Mohammed Abdel-Raheem

ACKNOWLEDGEMENT

I wish to express my sincere gratitude, deep thanks and appreciation to Prof. Dr. Safwat Mahrous for his kind supervision, guidance, and advice.

Also, I have the great honour to express my deepest gratitude and sincerest thanks to Prof. Dr. Attia Shahin for his close supervision, guidance, unlimited help, and continuous encouragement.

My special thanks to Prof. Dr. Mohammed Marzouk Ibraheem of Ain Shams University, who contributed in the supervision of this thesis from 1/10/1985 to 14/11/1988, for his guidance, continuous encouragement, and great help.

Finally, thanks to my family for their understanding, supporting, and patience.

ABSTRACT

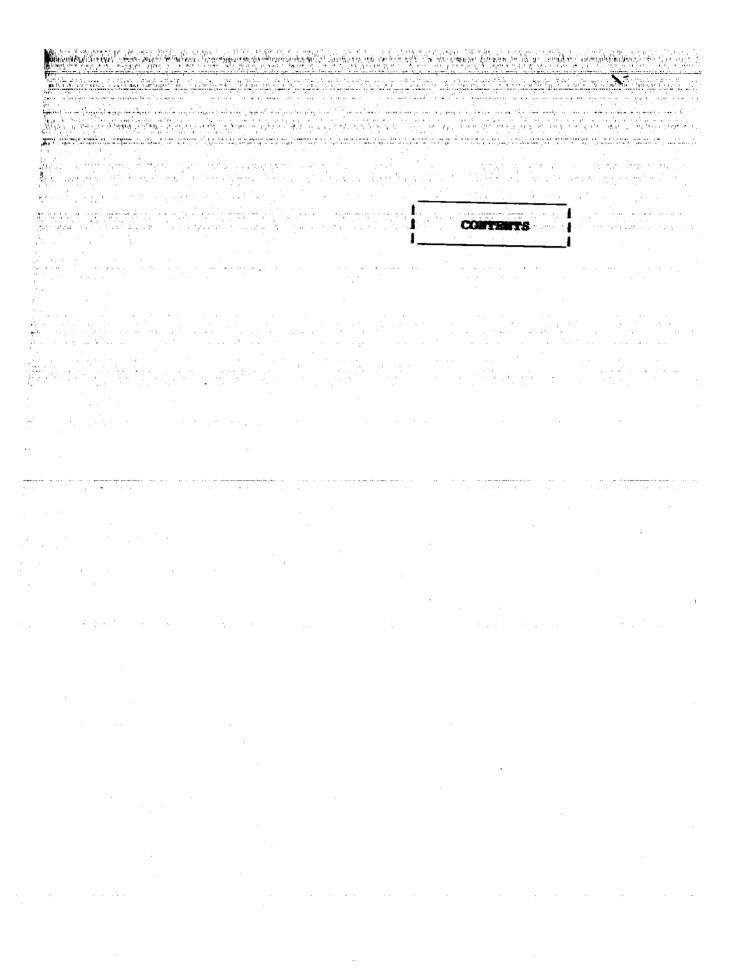
This thesis deals with the problem of scene matching. Given a pictorial description of a region of a scene, it is desired to determine which region in another image is similar. The simplest method to solve this problem, which is called template matching, is described as it is the backbone of all other methods.

A review of other image matching techniques using image processing based algorithms such as ordered search techniques in template matching, two-stage template matching, coarsefine template matching, and sequential similarity detection algorithms are discussed.

The most effecient algorithms for scene matching are analyzed and discussed. Those are the sequential hierarchical scene matching algorithms. The main target of this thesis is to investigate those approaches. The first approach is the basic sequential hierarchical scene matching dealing with gray-scale images. The sequential decision rules are discussed as well as the derivation of threshold sequence. The "pairing functions "concept applied to the second approach, namely, the sequential scene matching using edge features, is described as well as edge extractions and similarity measure.

Experimental results are presented for matching sattelite images of Al-Minea (Egypt) and Montana (USA) using those sequential hierarchical scene matching algorithms as well as the two-stage template matching algorithm. The experimental work is done using the Remote Image Processing System (RIPS). The results prove efficency and success in reaching the best match location with minimum required computations. A comment on the results is presented.

LIST OF SYMBOLS

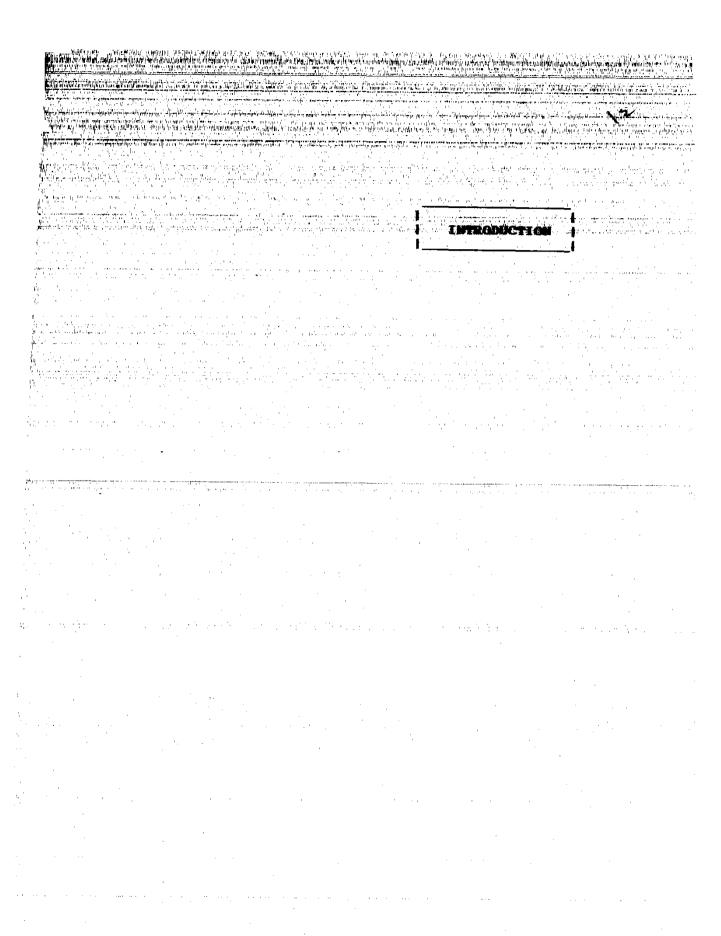

Chapter 1 :	
N	Number of features to be measured for each input pattern
n _X	Feature space
×ĸ	Kth feature measurements
w	Pattern class j
D _i (x)	Discriminant function
*	Related to
r(w _i ,d)	Conditional loss for X + W
R(P,d)	Average loss
r _x (P,d)	The a posteriori conditional average loss of decision d for a given feature measurement X
ď.	Optimal decision
L(w _i ,d)	Loss function
λ	Liklihood ratio
e _{ij}	The probability of deciding $X \leftarrow W$ when $X \leftarrow W$ is true
U _n (X/w _j)	The generalized sequential probability ratio test for the ith pattern class
Chapter 2 :	
R(u,v)	Normalized correlation measure at the reference location (u,v)
E(u,v)	Accumulated error at the reference location (u,v)
m, n	Subtemplate size
t _i	The level value of the ith point of the template
P _i	The level value of the ith point of the picture of the same size

υ	The set of template points which are 1
Z	The set of template points which are 0
N _U (0)	The number of picture points in U which are 0
N _Z (1)	The number of picture points in Z which are 1
n	Number of template points
N[h, v]	Normal distribution of mean $m{\mu}$ and standard deviation $m{\delta}$
ф(u)	Normal distribution function
9 (u)	Normal density function
r _i	The frequency of occurrence of the gray level value of the $i\underline{t}h$ point in the template
t	Threshold for mismatch measure
E(p,q,t,m,n)	Expected computational cost
I(i,j)	Sequential Similarity Detection Algorithm surface
W	Window
s	Search area
S ^{i,j} M .	Subimage of the search area of size $M_{\times}M$
Chapter 3:	
L	Number of levels
К	Resolution level K
ER	Spectral energy
ϵ_{A}	Aliasing error
$f_{K}(x,y)$	Gray scale image at resolution level K
F _K (w _x ,w _y)	Fourier spectrum of the sampled image field $f_{K}(x,y)$
s(x,y)	sampling signal
Š	mean intensity of the image elements

w	mean intensity of the window elements
G _K (i,j)	Location matrix formed at resolution level K to deal with the image at resolution level K-1
E	Cumulative error
Ē	Expected error
\mathbf{T}_{n}^{K}	Threshold value for resolution level K
SR	Search region
R(u,v)	Similarity measure (correlation)
R _b	Correlation with a background level
R_{T}	Threshold for similarity measures
^p K	Probability of match
P _d	Overall Probability of match

Amount of computational saving

O


CONTENTS

Introduct	tio	n		1
CHAPTER 1 :		oduction to Image Understanding	3	
		1.1	Pattern Recognition	3
		1.2	Deterministic Classification Techniques.	5
		1.3	Statistical Classification Techniques.	9
		1.4	Sequential Decision Models for Pattern Classification.	12
		1.5	Structural and Syntactic Models.	19
CHAPTER 2 :	Imag	e Matching Techniques.	23	
	2.1	Introduction.	23	
		2.2	Remote Sensing Algorithm.	25
		2.3	Image Matching Process.	26
		2.4	Image Matching Algorithms.	29
•	2.5	Template Matching and Correlation Techniques.	30	
	2.6	Ordered Search Techniques in Template Matching.	34	
		2.7	Two-Stage Template Matching.	37
			2.7.1 The Binary Case.	39
			2.7.1.1 Distribution of the Mismatch Measure.	40
			2.7.1.2 False Alarm Probability.	41
			2.7.1.3 Expected Computational Cost.	43
			2.7.1.4 Optimization.	43

		(C	
	2.7.2 The Gray-Scale Case.	44	
2.8	2.8 Coarse-Fine Template Matching.		
2.9	Sequential Similarity Detection Algorithm (SSDA).	55	
	2.9.1 The Basic Concept.	56	
	2.9.2 Constant Threshold Algorithm.	56	
	2.9.3 Monotonic-Increasing Thresh Algorithm.	old 59	
2.1	0 Conclusion	61	
CHAPTER 3 : Seq	uential Hierarchical Scene Matching.	64	
3.1	The Pyramid Data Structure.	64	
3.2	Hierarchical Search.	65	
3.3	Smoothing Properties.	67	
3.4	Hierarchical Search Analysis.	69	
3.5	Sequential Decision Rules.	76	
	3.5.1 Error Measures.	78	
•	3.5.2 Derivation of Threshold Sequence.	79	
3.6	Sequential Scene Matching Using Edge Features.	83	
	3.6.1 Edge Extractions.	83	
	3.6.2 Pairing Functions.	84	
	3.6.3 Similarity Measure.	86	
	3.6.4 Threshold Sequence.	87	
3.7	Digital Comparison of Remote Sensing Images Having Different Space Resolution.	90	
3.8	Efficiency of Hierarchical Scene	92	

CHAPTER 4	: ALG	ALGORITHMS AND RESULTS		
	4.1	The Re	emote Image Processing System	94
	4.2	Matchi Sequer Scene	98	
		4.2.1	The Basic Approach For Gray-Scale Images.	98
			4.2.1.1 Threshold Sequence Categories.	101
			4.2.1.2 Performance.	102
		4.2.2	The Approach For Binary Images Using The Edge Features.	110
			4.2.2.1 Edge Threshold.	110
			4.2.2.2 Performance.	110
	4.3	The Ap Matchi	The Approach of Two-Stage Template Matching For Binary Images.	
		4.3.1	Choosing The Subtemplate Size.	115
		4.3.2	Performance.	115
	4.4 Conclusion.		sion.	120
•	4.5	Sugges	tion For Future Work.	123
REFERENCES				124
APPENDIX				126

ARABIC SUMMARY

