Ain Shams University
Faculty of Engineering

COMPUTER AIDED DESIGN OF MICROSTRIP CIRCUITS

Ву

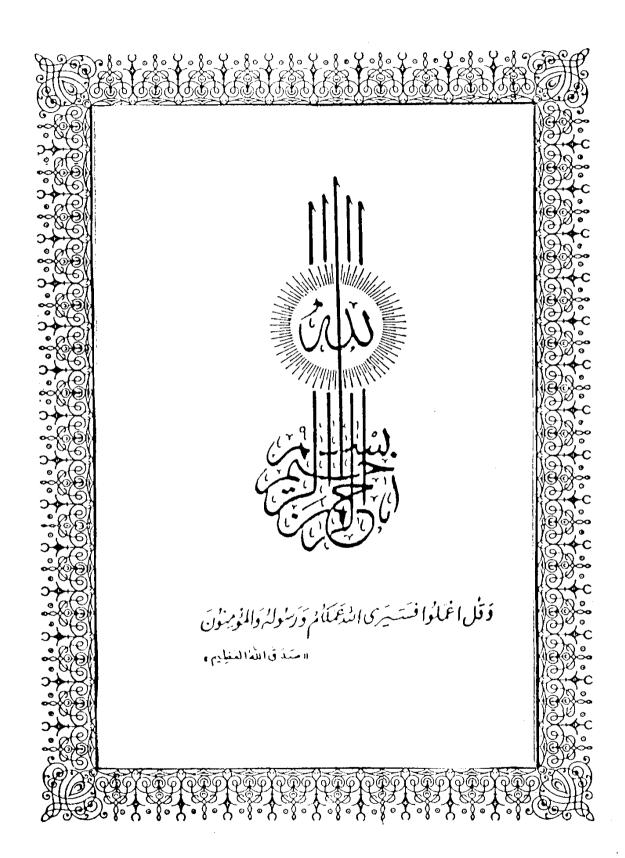
Eng. Omayma Mahmoud Mohamed Mostafa Microstrip department Electronics Research Institute

A THESIS

Submitted in partial fulfillment of the requirements of the degree of Master of Science in Electronic and Computer Engineering

621.3819535

Supervised by


4132

Prof.Dr.Safwat M.Mahrous Electronic and Computer Dept. Ain Shams University.

Prof.Dr.Esmat A.F.Abdallah Electronics Research Institute

Dr.Hadia M.S.El Henawy Electronic and Computer Dept. Ain Shams University.

CAIRO - 1991

Examinares Committee

Name , Title and Affiliation

- Prof. Dr. Mohamed Nabil saleh .
 Ain shams University , Faculty of Engineering .
- Prof. Dr. Nabil Abdel Lattief El-Deeb.
 Military Technical College.
- Prof. Dr. Esmat A. F. Abdallah.
 Electronic Research Institute.
- 4. Dr. Hadia M. S. El-Henawy
 Ain shams University , Faculty of Engineering .

Signature

M.N. Salak

N. 4. K.

TIST, ENCACTOR !

-El Henrawy

Date: / 4 / 1991

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electronic and Computer Engineering .The work included in this thesis was carried out by the author in the Department of Electronics and Computer , Ain shams University , and in the microstrip department , Electronics Research Institute , from 15/10/1986 to 31/10/1990 .

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution .

Date : 7/5/1991

Signature : Omayma

Name : Omayma Mahmoud Mohamed Mostafa .

ACKNOWLEDGEMENT

All my thanks to ALLAH.

The author wishes to thank Prof.Dr. SAFWAT MAHROUS
MAHMOUD Head of Electronics and Communications Department
Faculty of Engineering Ain - shams University , for his
supervision

My deepest gratitude and sincerest thanks to PROF. Dr. ESMAT ABDEL FATTAH ABDALLAH, Head of Electronics Research Institute, for her supervision fruitful guidance through the course of the work, encouragement, endless help and many illuminating discussions. I wish to indicate that even most of the literature were supplied from her private library.

Also I express my deepest gratitude and thanks to Dr. HADIA EL HENNAWY, Department of Electronics and Communications, Faculty of Engineering Ain - shams University for the unceasing encouragement, powerful support and for providing me with the relevant literature as well as many useful discussions.

I would like to express my special thanks to the staff of Electronics Research Institute especially the staff of the Microstrip Department. Also my deepest gratitude to Col. Dr. AHMED ABD EL-NAZIR and Col. Dr. MOHAMED AMMER NASSEF and Col. Dr. ABDALLAH MOHAMED MOSELHY, for their help.

I would like to express my deepest gratitude and special thanks to my father, mother, husband, sisters, and son for their encouragement and help.

ABSTRACT

Realization of masks is the most important step in production of microstrip circuits. It is also the most critical and time - consuming one. Up to now there are two ways to make the mask:

- 1) From a large-scale drawing , the mask is cut by hand or by hand - driven coordinggraph on a cut "n" strip film .
- 2) With the help of a powerful computer running analysis and synthesis program and driving the coordinograph via a graphic program. This approach is the most complete one but is very expensive, in both software and hardware.

In this thesis we produced a program written in BASIC and running on a micro-computer connected to a plotter. The program is interactive and self documented and all necessary informations and instructions appear on a screen. The desgin data such as: permittivity and thickness of the substrate, input impedance, frequency, ...etc. are entered. The program computes all necessary parameters using formulas which yield an excellent approximation, taking into account metal thickness and dispersion. After indicating the final dimensions, the plotter draws automatically the mask on a paper - sheet.

A circuit of the balanced mixer is chosen as an application example that contains many components all connected together. The mixer is realized and measured to illustrate the applicability of the design procedure and compatibility with the theoretical behaviour.

The material of the thesis is divided into seven chapters and five appendices .

Chapter (1) presents an introduction about the computer aided design approach with its three important segments namely modeling, analysis and optimization .It also introduces a brief summary about the available programs, microstrip technology, and the scope of this thesis.

Chapter (2) describes the design and synthesis of a single microstrip line, the design of symmetric coupled lines and hybrid junctions namely the branch line coupler and the rat - race junction. Design examples for these types of elements are given by the aid of subroutine programs.

Chapter (3) presents different types of microstrip filters namely low pass using single and coupled microstrip lines , high pass filter and parallel coupled band pass filter . Design examples for each type of filter are also presented and drawn using the subroutine program and the plotter .

Chapter (4) describes representation of discontinuities such as: open end, short circuit ends, right angled bends, steps in widths, T- junctions,...etc. Some matching sections are also presented namely: tapered lines, edge coupled impedance transformers, open ended coupled microstrip stubs, shorted coupled microstrip stubs and microstrip radial stub.

Chapter (5) introduces the design of a single balanced mixer circuit. This circuit is chosen as an example that contains many elements such as branch-line coupler, matching sections, transformers and low pass filter. The mask of the mixer is drawn

automatically on the screen and on the plotter , according to the given specifications .

Chapter (6) includes steps of fabrication and measurement of the practical mixer .

Chapter (7) includes discussions and suggestions for further work .

LIST OF SYMBOLS

```
Z_0: characteristic impedance of the microstrip line in (n).
W: strip conductor width in (mm).
h: substrate thickness in (mm).
t : strip conductor thickness in (mm).
Weff: effective conductor width = We
\varepsilon_{\mathbf{r}}: relative dielectric constant of the substrate material .
\varepsilon_{\rm eff}: effective dielectric conctant = \xi_{\rm e}.
\varepsilon_0: permittivity of air .
F : frequency in (GHz) .
c : speed of ligth in (mm/sec) .
\lambda_{\alpha}: free space wavelength in (mm).
\lambda_s: microstrip wavelength in (mm) = \lambda_a = \lambda_m.
\eta : intrinsic impedance of air = 376.9911 \alpha.
\mu_{\Omega}: free space permeability = 4\pi \times 10^{-10} (h/mm).
\delta: conductivity of the microstrip material (\bar{s}^1).
\beta: propagation constant in (mm^{-1}).
s: line spacing in (mm).
 u:u=W/h.
 g : g = s / h.
 \varepsilon_{\text{effe}}(0) : static even mode effective dielectric constant .
 \epsilon_{\rm effo}(0) : static odd mode effective dielectric constant .
 \epsilon_{
m effe}({
m fn}) : frequency dispersion even mode microstrip effective
              dielectric constant .
 \epsilon_{
m effo}({
m fn}) : frequency dispersion odd mode microstrip effective
                dielectric constant.
```

```
Y<sub>G</sub>: characteristic admittance (\bar{n}^1).

Y: propagation constant.

K: a gain factor.

n: number of sections in the filters.

L<sub>A</sub>: the attenuation in (dB) at the frequency (F).

L<sub>R</sub>: the pass-band edge at the filter = 3 dB.

l<sub>L</sub>: the length of the inductance section.

l<sub>C</sub>: the length of the capacitance section.

B: The band width.
```

TABLE OF CONTENT

		Page
ACKNOWLEDGEM	ENT	í
ABSTRACT		ii
LIST OF SYMB	OLS	Vi
CHAPTER 1 Com	puter aided design of microstrip circuits	,Review.
1.1	Introduction	1
1.2	Computer aided design approach	3
1.3	Basic aspects of CAD	7
1.4	Microstrip technology	11
1.5	Available programs	12
1.6	Scope of the work	15
CHAPTER 2	Microstrip Lines and Hybrid Junctions	
2.1	Introduction	18
2.2	Single Microstrip Lines	19
2.3	Parallel-Coupled Microstrip Lines	28
2.4	Branch line couplers	43
2.5	Rat-Race couplers	57
CHAPTER 3	Microstrip Filters	
3.1	Introduction	64
3.2	Low Pass Filter	65
3.3	High Pass Filter	7 4
3.4	Band Pass Filter	81
3.5	parallel coupled low pass filter	91

CHAPTER	4 M.	crostrip Matching Sections and discontinuities	-
	4.1	Introduction	99
	4.2	Tapered Lines	101
	4.3	Edge Coupled Line Impedance Transformers	107
	4. 4	Open Ends Discontinuity	120
	4.5	Short circuit	121
	4.6	Notch	121
	4.7	Right Angled Bends	122
	4.8	Steps in Width	123
	4. 9	T - Junction	125
	4.10	Open Ended Coupled Microstrip Stubs	126
	4.11	Shorted Coupled Microstrip Stubs	128
	4.12	Microstrip Radial Stubs	129
CHAPTE	R5 De	esgin of a mixer as an application .	
	5.1	Introduction	135
	5.2	Schottky - Barrier Diodes	137
	5.3	Types of Mixers	138
	5.4	Design Considerations	148
	5.4.1	Mixer design Procedure	148
	5.4. 2	A Mixer design example	150
	5.4.3	Another Mixer design example	158
СНАРТЕ	R ő F	abrication of Mixer and experimental measuremen	ıts
	6.1	Fabrication	163
	6.2	Experimental measurements	166

b. 2. 1	Conversion loss measurements	166
b.2.3	LO to RF isolation measurement	172
6, 2, 4	LO port matching measurement	173
0.2.5	RF port matching measurement	175
CHAPTER 7 Col	nclusions and Suggestions for further work.	177
APPENDIX I	ABCD Matrix of two branch coupler	180
APPENDIX II	Analysis of the taper line	184
APPENDIX III	Synthesis of the edge coupled line impedance	
	transformer .	186
APPENDIX IV	Microstrip Processing notes for coated	
	and uncoated substrates.	191
APPENDIX V	The program description.	196
REFERENCES		200

The passence of the second of

gas is ein