STUDIES ON SELECTED AGROMANAGEMENT SYSTEMS FOR PROTECTED CULTIVATION OF SOME VEGETABLE CROPS

BY

USAMA AHMED ALY EL-BEHAIRY

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUREMENTS FOR THE DEGREE OF

دمة الئتر

MASTER OF SCIENCE

IN

AGRICULTURE (VEGETABLE CROPS)

DEPARTMENT OF HORTICULTURE
FACULTY OF AGRICULTURE
AIN SHAMS UNIVERSITY
1990

APPROVAL SHEET

STUDIES ON SELECTED AGROMANAGEMENT SYSTEMS FOR PROTECTED CULTIVATION OF SOME VEGETABLE CROPS

BY

USAMA AHMED ALY EL-BEHAIRY

B.Sc. IN HORTICULTURE AIN SHAMS UNIVERSITY 1984

This thesis for M.Sc. degree has been approved by

2- Prof.Dr. ADEL S. EL-BELTAGY

Prof. of Vegetable Crops. Ain Shams University.

Prof.Dr. ABD EL-REHIM SHARAF

Prof. of Vegetable Crops. Ain Shams University.

Date of examination : 27 / 3 /1990

STUDIES ON SELECTED AGROMANAGEMENT SYSTEMS FOR FROTECTED CULTIVATION OF SOME VEGETABLE CROPS

BY

USAMA AHMED ALY EL-BEHAIRY
B. Sc. IN HORTICULTURE
AIN-SHAMS UNVERSITY
1984

UNDER THE SUPERVISION OF

1. Prof. Dr. ABD EL-REHIM SHARAF

Prof. of Vegetable Ain Shams University

- Dr. ABD El-HAMID EL-ASDOUDI
 Assist Prof. of Vegetable Ain Shams University
- 3. Dr. AYMAN FARID ABOU-HADID
 Assist Prof. of Vegetable Ain Shams University

ABSTRACT

The current study was conducted at the experimental station in Wye collage London University during the period from 1985 to 1987.

Four experiments had been made. Two experiments were on tomato and lettuce to study the effect of continuous and intermittent circulation treatments on growth characters, chemical composition and yield. The other two experiments were on towato and cucumber to study the effect of alternating flow circulation at different stages of the growing cycle treatments on growth characters, chemical composition and yield.

 $K = c_{0} c_{0} d_{0} d_{0} + \dots$. Taken it satisfies a constant which despeted for the four experiments:

Data were recorded on the following characters:

Plant height, leaf number, percentage of macro nutrients, accumulative water consumption, early and total yield, Vegetative growth measurments, water use efficiency and macro nutrient removal from the tank except the first experiment.

The obtained results could be summarized as follows:

Concerning tomato and cucumber:-

- 1. No reduction in total fruit yield was observed due to the use of intermittent system in comparison with the continuous flow system.
- 2. There was an increase in early yield in intermittent flow compared to control.
- 3. No reduction was observed in plant height and leaf number per plant between all treatments.
- 4. There was a reduction in stem and leaf, and root fresh and dry weight in the intermittent system.

As for tomato, cucumber and lettuce the obtained results could be summarized as follows:

- 1. There was a reduction in water consumption in intermittent flow compared to continuous flow.
- 2. There was an increase in water use efficiency in intermittent treatments compared to continuous flow.
- 3. There was a reduction in phosphorus and calcium content in tomato, cucumber and lettuce leaves and in tomato and cucumber fruits. This was due to the use of intermittent technique, nevertheless, their were no observations of deficiency symptoms.

ACKNOSLEDGEMENT

- I would like to express my deep sense of gratitude to Prof. Dr.

 ABD EL-RAHIM SHARAF Professor of vegetable crops. Dr. ABD

 EL-HAMID EL-ASDOUDI associate professor of vegetable crops and

 Dr. AYMEN FARID ABOU-HADID associat professor of vegetable crops

 Ain Shams Univ., for their supervision, constructive guidance,

 encouragements and continuous valuable help throughout the

 course of this investigtion and perparation of the manuscript.
- Many thanks to Prof. Dr. M. A. MAKSOUd Professor of vegetable crop and prof. Dr. A.S. El-BELTAGY Professor of vegetable crop, Ain shams Univ. for giving me the chance to do this work in the U.K and for continous advice and valuable gaidance through the tomato linkage program and EGNO project.

Many thanks to Dr. S.W BURRAGE, Wye Collage, London Univ. UK., for facilites offered in Hort Dept., during my stay there (1985-1987).

I am much indibited to the staff and technition of Wye Collage London Univ., for there help.

Many thanks to the staff member and collegues in the Hort. Dept. Ain Shams Univ., for their help.

CONTENTS

			Page
l –	INTR	ODUCTION	1
2–	REVI	EW OF LITERATURE	2
3-	MAT	ERIALS AND METHODS	7
4_	RES	<u>JLTS</u>	21
4.1	The	first experiment	21
		The effect of continuous and intermittent circulation	21
		on growth characters and chemical composition and yield	21
		of tomato "Lycopersicon esculentum, Mill".	21
4	.1.1	Plant height and leaf number.	21
	.1.2	Percentage of macro nutrients in the fruits.	21
	.1.3	Accumulative water consumption.	25
	.1.4	Early and total yield.	25
	.1.5	Vegetative growth measurements	25
	1.1.6	Precentage of macro nutrients in the leaves.	29
	1.1.7	Water use efficiency.	31
4	1.2	The secound experiment	37
		The effect of continuous and intermittent circulation	37
		on growth characters, chemical composition and yield	
		of lettuce "lactuca sativa L."	

		Page
4.2.1	Accumulative water consumption	37
4.2.2	Accumulative nutrients removal from the tank for	
	lettuce	37
4.2.3	Vegetative growth measurements	41
4.2.4	Chemical composition of lettuce	43
4.2.5	Water use efficiency	43
4.3	The third experiment	46
	The effect of alternating flow at different stages of	46
	the growing cycle on growth characters, chemical	
	composition and yield of tomato (Lycopersicon	
	esculentum, Mill).	
4.3.1	Plant height and leaf number	46
4.3.2	Percentage of macro nutrients in tomato fruits	46
4.3.3	Accumulative water consumption	49
4.3.4	Early and total yield.	49
4.3.5	Accumulative nutrients removal from the tank for	
	tomato	49
4.3.6	Vegetative growth measurements	55
4.3.7	Percentage of macro nutrients in the leaves	59
4.3.8	Water use efficiency	61
4.4	The fourth experiment	69
	The effect of alternating flow at different stages of	69
	the growing cycle on growth characters, chemical	
	composition and yield of cucumber (Cucumus sativus L).	
4.4.1	Plant height and leaf number	69
4.4.2	Percentage of macro nutrients in the fruits	69
4.4.3	Accumulative water consumption	73
4.4.4	Early and total yield .	73
4.4.5	Accumulative nutrients removal from the tank for	
	cucumber	73
4.4.6	Vegetative growth measurements	78
4.4.7	Percentage of macro nutrients in the leaves	78
4.4.8	Water use efficiency	82

		Page
5	DISCUSSION	87
b.	SUMMARY AND CONCLUSIONS	93
7.	REFERENCES	98
8.	APPENDIX	102
9.	ARABIC SUMMARY	

LEST OF TABLES.

		Page
1.	The effect of continuous and intermittent treatment of	
	tomato on tomato:	
1.1	Plant height and leaf number	22
1.2	Early and total yield	27
1.3	Total fresh and dry weight	28
1.4	Percentage of N,P,K,Ca, Mg in leaves	30
1.5	Water use efficiency on total fresh and dry weight of aerial	32
	parts	
1.6	Water use efficiency on root fresh and dry weight	33
1.7	Water use efficiency on fruit fresh and dry weight	34
1.8	Water use efficiency on total plant fresh and dry weight	36
2.	The effect of continuous and intermittent treatments	
	on lettuce :-	
2.1	Vegetative growth measurments.	42
2.2	Percentage of N,P,K,Ca, Mg in leaves	44
2.3	Water use efficiency on plant fresh and dry weight	45
3.	The effect of alternating flow at different stages treatments	
	on tomato :-	
3.1	Plant height and leaf number per plant	47
3.2	Early and total yield	53
3.3	Total fresh and dry weight	57
3.4	Water use efficiency on fresh and dry weight of aerial	64
	parts	
3.5	Water use efficiency on root fresh and dry weight	66
3.6	Water use efficiency on fruit fresh and dry weight	67
3.7	Water use efficiency on total plant fresh and dry weight	68
4.	The effects of alternating flow at different stages	
	on cucumber :	
4.1		70
4.2		76
4.3	Total fresh and dry weight	80

		Page
4.4	Percentage of rl,P,K,Ca, Mg in eaves	81
4.5	Water use efficiency on fresh and dry weight of acrial parts	83
4.6	Water use efficiency on root fresh and dry weight	84
4.7	Water use efficiency on fruit fresh and dry weight	85
4.8	Water use efficiency on total plant fresh and dry weight	86

UST OF FIGURES

		Page
١.	The effect of continuous and intermittent circulation on :-	
1.1	Percentage of nitrogen, phorphorus and magensium in tomato fruits	23
1.2	Percentage of potassium and calcium in tomato fruits.	24
1.3	Accumulative water consumption of tomato	26
2.	The effect of continuous and intermittent circulation on :-	
2.1	Accumualative water consumption of lettuce	38
2.2	Accumulative Calcium and magnesium removal from the tank for lettuce.	39
2.3	Accumulative phosphorus and potassium removal from the tank for lettuce.	40
3.	The effect of alternating flow at different stages on:-	
3.1	Percentage of phosphorus and nitrogen in tomato fruits	48
3.2	Percentage of potassiun and magnesium in tomato fruits	50
3.3	Percentage of calcium in tomato fruits	51
3.4	Accumulative water consumption of tomato	52
3.5	Accumulative potassium and phosphorus removal from the tank	54
	for tomato	
3.6	Accumulative calcium and magnesium removal from the tank for tomato	56
3.7	Percentage of potassium and nitrogen in tomato leaves	60
3.8	Percentage of phosphorus and magnesium in tomato leaves	62
3.9	Percentage of calcium in tomate leaves.	63
4.	The effect of alternating flow at differnt stages on:	
4.1	Percentage of phosphorus and magnesium in cucumber fruits	71
4.2	Percentage of potassium and nitrogen in cucumber fruits	72
4.3	Percentage of calcium in cucumber fruits	74
4.4	Accumulative water consumption of cucumber	75
4.5	Accumulative potassium and phorphorus removal from the tank for cucumber.	77
4.6	Accumulative of calcium and magnesium removal from the tank for cucumber.	79

LIST OF APPENDICES

		Page
1.	The effect of continuous and intermitten	
	treatments on :-	
1.1	Percentage of nitrogen, phosphorus and magnesium	.103
	in tomato fruits.	
1.2	Percentage of calcium and potassium in tomato	104
	fruits -	
1.3	Accumulative of water consumption for tomato	105
2.	The effect of continuous and intermittent	
	treatments on :-	
2.1	Accumulative of water consumption for lettuce	106
2.2	Accumulative of calcium and magnesium removal	107
	from the tank	
2.3	Accumulative of potassium and phosphorus removal	108
	from the tank	
3.	The effect of alternating flow at different	
	stages on :-	
3.1	Fercentage of phosphorus, nitrogen and potassium	109
	in tomato fruits	
3.2	Percentage of magnerium and calcium in tomato	110
	fruits	
3.3	Accumulative water consumption for tomato	111
3 - 4	Accumulative potassium and phosphorus from	112
	the tank	
3.5	Accumulative calcium and magnesium removal from	113
	the tank	
3.6	Percentage of potassium, nitrogen, phosphorus,	114
	magnesium and calcium in tomato lealeaves	
1.	The eccect of alternating flow at different	
	stages on :-	
1.1	Percentage of phosphorus, magnesium and	115
	potassium in cucumber fruits	
. 2	Percentage of mitogen and calcium in cucumber	116
	fruits	

lits of abbreviations

CF = Conductivity factor Mega jule per squre meter MJm⁻² = mg/liter = milligram per liter cont-inter = continuous - intermittent inter-inter= intermittent - intermittent inter-cont = intermittent - continuous centimeter square centimeter cm = = gram per plant g/plant = water use efficiency concerning aerial parts WUE/AFW = fresh weight. WUE ADW = Water use efficiency concerning aerial parts dry weight. Water use efficiency concerning root fresh NUELREW = weight. Water use efficiency concerning root dry WCE/ROW F weight. Water use efficiency concerning fruit fresh WUIL FFW = weight. Water use efficiency concerning fruit dry WUE FEW = weight. Water use efficiency concerning total plant WUEIPEW = fresh weight. Water use efficiency concerning total plant WUE FOW = dry weight. Liter per plant L.p.an. =

gram per liter

g/1 =

INTRODUCTION