OF SOME BANGOACTIVE INSTRUMENTATIONS

ANIMA ARMS MARKED

Perloca Checkstry Reportment

Atendo Recopy Authority

Arch Republic of Reput

A Whods Developed for the Mester of Science Decree

541.38 A.A

From

Carlo College

Ain-Chans University

College

1972

Index		
		Page
1.	Introduction	1
1.1	Decay Scheme of 60Co	1
1.2	60Co as an Irradiation Source	3
1.3	The Nuclear Processes for 60Co Production	5
1.4	Radioactive Nuclides of Cobalt	7
1.5	Production of 60Co in a Fower Reactor	9
1.6	Production of 60Co in the Rheinsberg Power Reactor (WMER-2)	11
1.7	Specification of Target Material	11
1.8	Calculation of the Activity Produced due to the Nickel Layer Irradiation	12
1.9	Irradiation Technique	15
1.10	Activity Measurements	15
1.11	Induced Activities in the 50Co Targets	19
2. 2.1	Standard. Introduction of 600 by 3-y	20
~ • 1	Coincidence Counting	20
2.1.1	The Principle of the B-y Coincidence Wethod	21
2.1.2	Necessary Corrections	23

23

23

24

25

a) Background Correction

d) Bead-time Correction

c) Reg lying-time Connect! n

b) Apoilental Commidence Correction

		Page
2.1.3	B-y Coincidence System	26
2.1.4	Adjustment of the Coincidence System	28
2.1.5	Preparation of the Counting Samples	29
2.1.6	Preparation of the Carrying Foil	31
2.1.7	Reduction of the Self-Absorption by the Addition of Insulin	31
2.1.8	Counting Efficiency of the B-y Coincidence System Using 60Co Standard Solution	32
2.2	Standardization of 60Co by y Coincidence Counting	34
2.3	Liquid Scintillation Technique for the Determination of 60Co Activity	38
2.3.1	The Scintillator Solution	41
2.3.2	Beckman LS-233 System	42
2.3.3	Source Preparation	43
2.3.4	Results	44
2.3.5	Quench Effect Correction	48
2.3.6	The Absolute Liquid Scintillation Method for 60Co Standardization	51
2.4	Sodium Iodide Crystal Measurements	56
2.4.1	Emeriment and Results	61

		Page
3.	Activity Measurements of Solid Sources	64
3.1	Ionization Chamber Measurements	67
3.1.1	Principle of the Method	67
3.1.2	Necessary Corrections	70
	a) Correction for Absorption in Air	70
	b) Correction for Absorption in the Walls of the Container	71
	c) Correction for Self-Absorption	72
3.2	Dimensions of the Solid Sources Measured with the Ionization Chambers	76
3.3	Determination of the Filling Factor	77
3.4	Self-Absorption Correction for Targets	78
3.5	The 1 Ci 60Co Source	80
3.5.1	Self-Absorption in the 1 Ci 60Co Source	82
3.5.2	The Activity Determination by Ionization	
	Chambers	83
3.6	Ionization Chambers Description	84
3.6.1	The Spherical Ionization Chamber VA-K-253	84
3.6.2	The 4 TWell Ionization Chamber	89
3.7	Results and Discussion	92
3.7.1	The 477 Well Ionization Chamber Measurements	92
373	The Spherical Ionization Chamber Messurements	96

	•	Page
4.	Neutron Flux Determination	100
4.1	Effective Neutron Flux Estimation	100
4.2	Flux Correction	108
4.2.1	Start-up Correction	108
4.2.2	Calculation of the Activation Cross-Section	
^	- 59	110
4.3	Results and Calculations	111
	Summary	114
	Literature	118

1. Introduction

This work aims at the accurate determination of the activity of a large ⁶⁰Co source for the use in different scientific and other purposes. The source was prepared by the irradiation of pure cobalt targets at the Rheinsberg power reactor (WWER-2) in German Democratic Republic and the collection of these irradiated targets was made in the isotope production laboratory at Rossendorf.

1.1 Decay Scheme of 60Co

60Co decays by B-emission to the metastable state 60Ni at 2.5 MeV energy level this metastable state decays to the stable 60Ni through the emission of 2 gamma rays (1.17, 1.33 MeV) in cascade as shown by its decay scheme Fig. 1 [1]. It's B-particles are fairly weak betas of maximum energy 0.310 MeV, which can be fully absorbed through 0.3 mm Al thickness, while the 2 photons are relatively strong gamma rays. The more recent value of 60Co half-life is 5.27 years as given by [2].

Because of its two strong y-rays, its relatively long halflife (5.27 years) and the possibility of its production in an
adequat specific activity, 60Co is attractive as an irradiation
source, but of limited interest as an isotopic power source.
However, the gamma rays can be absorbed in heavy materials and
the resulting heat energy can be used directly for various heating
applications.

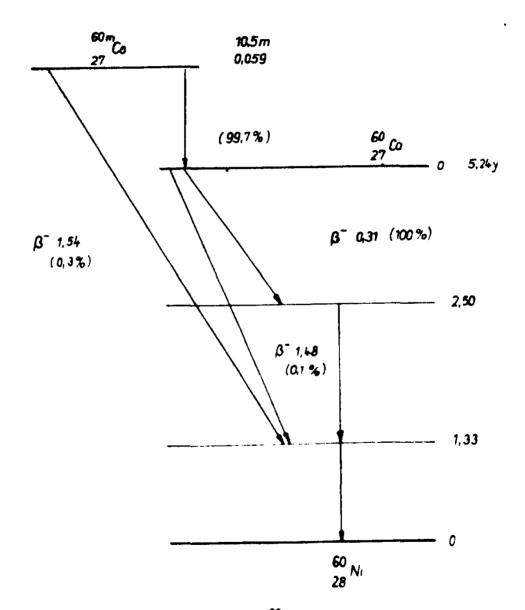


Fig 1 Decay Scheme of 60Co

1.2 60 co as an Irradiation Source

In the last 20 years large ⁶⁰Co irradiation sources have gained an increasing international significant value in many industrial, medical, agricultural and scientific research fields.

In industry [3,4] 60Co irradiation sources are used in the different following branches:

- Vulcanization of rubbers and plastics,
- Manufacturing of wood-plastic combinations,
- Applications to textile materials for the modification of its properties,
- Modification of semi-conductor properties,
- Radiation induced syntheses of compounds of biological interest,
- Sterilization in medicine, industry and food reservation,
- Prevention of vegetable germination,
- Polymerization and copolymerization for the production of high molecular compounds,
- Catalization for chemical reactions initiation,
- Hydrogenation of coal and coal products to produce hydrocarbon fuels.
- Pasteurization of vegetables, fruits, fruit juice, meat and fish.

Some of these possible applications are still in the stage of investigations, others like rubber and plastics vulcanization, manufacturing of wood-plastic combinations and modification of textile materials properties are already in the pilot plant pro-

duction in Soviet Union, Great Britain, USA, Japan and Canada.

In medicine [5]: by 1952 it became obvious that the idea of using radioisotopes in teletherapy could be extended in many directions and the production of teletherapy machines has become too widespread.

The rapidly developing realization that shielding is one of the main expenses in the installation of teletherapy machines and the current high price of ⁶⁰Co forced an investigation into fission-product sources. It was also realized, that the 5.27 years half-life of ⁶⁰Co is not an ideally long half-life. Cesium-137 was one of the obvious choices for teletherapy with an energy (0.662 MeV) half that of ⁶⁰Co, the shielding problems were much reduced and with a half-life (37 y) six times that of ⁶⁰Co the problem of decay was considerably improved. But cobalt-60 is a real clinical advantage due to the following apparent physical advantages:

- 1. Skin sparing and increased depth dose with 60Co have made radiotherapy more tolerable for the patient.
- 2. Decreased bone absorption when treating malignant tumours underlying bone due to the increasing depth dose.
- 3. Radiation sickness is less severe in patients treated with 60Co.
- 4. Simplified techniques for treatment and dependability as it has been the experience of users of 60Co teletherapy that mechanical breakdown are rare.

60Co sources have also other numerous useful applications in agriculture and scientific researches.

1.3 The Nuclear Processes for 60Co Production

Natural cobalt consists of 100 % 59 Co, the target atom for production of 60 Co. Irradiation of cobalt with reactor neutrons gives not only 60 Co but also 59 Fe and 56 Mm according to the reactions 59 Co(n,p) 59 Fe, 59 Co(n, \propto) 56 Mm. The second reaction is due to fast neutron irradiation [6]. The cross-sections of these reactions are small compared to that for the reaction 59 Co(n, $_{\gamma}$) 60 Co. This means, that cobalt is sensitive in the thermal region and the final product obtained when irradiating a cobalt target in a reactor is mainly 60 Co.

The ⁶⁰Co effective thermal neutron cross-section is the sum of the thermal neutron cross-sections to ⁶⁰Co + to ^{60m}Co. It is given by [7] as 29 barns calculated at the reactor temperature (300 °C [572 °F] a temperature chosen to be representative of most power reactor operations). Because of this fairly high production cross-section ⁶⁰Co can be produced with adequate specific activity by long irradiations Fig. 2 [7] and little of the product is lost by further neutron capture. The nuclear processes considered for production of ⁶⁰Co from ⁵⁹Co are shown in Fig. 3 [7]. Some metastable 10.4 min ^{60m}Co is formed, which is lost by beta decay to ⁶⁰Ni, neutron capture to form ⁶¹Co or isomeric transition to ⁶⁰Co. The thermal neutron capture cross-section of 10.4 min. ^{60m}Co is 100 barns but in a flux as high as 10¹⁵ neutrons/cm². sec. The transformation rate by neutron capture is only 0.01 % of the beta decay rate. The ratio of isomeric transition to beta decay is

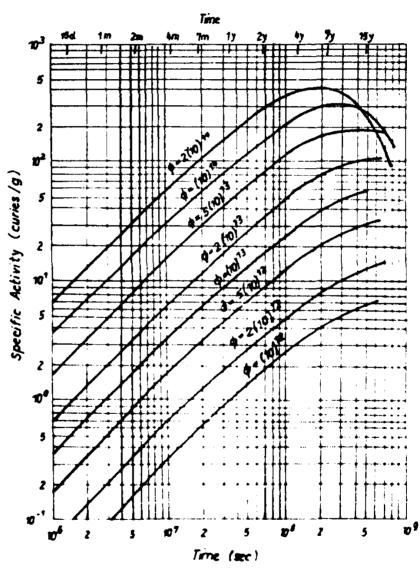


Fig 2 Production of 60 Co

> 99:1 [7] therefore, isomeric transition is predominant, and very little error is introduced by neglecting the formation of 60m_{Co} and assuming that all ⁵⁹Co is converted into ⁶⁰Co.

Fig. 3 Production of 60co from 59co [7]

1.4 Radioactive Nuclides of Cobalt

By the irradiation of pure inactive cobalt in reactor we obtain ⁶⁰Co and no other radioactive cobalt isotopes which are shown in table 1.

Table 1
Radioactive Isotopes of Cobalt [8,9]

Nuclide	^T 1/2	Mode of decay	Energy of Radiation (in MeV)	Method of preparation
54 _{Co}	0.18 sec	B ⁺	7.4	54 Fe(p,n)
	18.2 h	e ⁺ , ec	B ⁺ : 1.5 y: 0.477, 0.935, 1.41	54Fe(d,n) 54Fe(p,y), 56Fe(p,2n)
56 _{Co}	72 d	Ec, B ⁺	y: 0.845, 1.26, 1.74 2.01, 2.255, 3.25	56 _{Fe(d,2n)} , 56 _{Fe(p,n)} 58 _{Ni(d, \(\sigma \)} , 55 _{Mn(\(\sigma 3n)}
57 _{Co}	270 d	8 ⁺	β ⁺ : 0.26 y : 0.119, 0.131	56 _{Fe(d,n)} , 56 _{Fe(p,y)} 55 _{Mn(w,2n)} , 58 _{Ni(y,p)}
58m _{Co}	9.2 h	IT	γ : 0.025	55 _{Mn(~,n)}
	72 d	EC, B ⁺	B ⁺ : 0.47 y: 0.81, 1.62 0.51 (with B ⁺)	⁵⁵ Mn(∝,n)
59 _{Co}	Stable			
	10.1 min	IT, B+	B ⁻ : 1.56 y : 0.059	⁵⁹ Co(n, y)
€O _{Co}	5.3 y	3 -	B ⁻ : 0.306 y : 1.33, 1.17	⁵⁹ Co(n, y)

Table 1 (continued)

Nuclide	^T 1/2	Mode of decay	Energy of Radiation (in MeV)	Method of preparation
61 _{Go}	99 min	B -	ß": 1.42, 1.00	59 _{Co(t,p)} 64 _{Ni(p, &)}
				61 _{Ni(n,p)} , 64 _{Ni(d, & n)}
62 _{Co}	13.9 min	B-, y	B ⁻ : 2.88 y: 1.17, 1.47 1.74, 2.03	64Ni(d,~) 62Ni(n,p)
63 _{Co}	52 sec	6 -	B-: 3.6 max	64 _{Ni(y,p)}
64 _{Co}	5 min			64Ni(n,p)

1.5 Production of 60Co in a Power Reactor

In principle, any neutron generated radioisotope can be produced in a power reactor, but actually only a few ones appear to be of interest.

in a power reactor, while short lived radioisotopes production which requires that targets be inserted and removed from the reactor on a frequent schedule would be impractical for power reactor unless special facilities were designed and built into them. This requires penetrations of the reactor pressure vessel, and it is highly unlikely that income from production of short lived radioisotops