## A STUDY OF SOME GENETICAL AND ENVIRONMENTAL FACTORS AFFECTING PERFORMANCE OF LAYING HENS AND THEIR CROSSES

By
ESAM FOUAD ABD EL-HAMIED

A thesis submitted in partial fulfillment

of

the requirements for the degree of

DOCTOR OF PHILOSOPH

in

Agricultural Science

(Poultry Breeding

E. f

4978°

Poultry Production Department

Faculty of Agriculture

Ain Shams University

1993



### A STUDY OF SOME GENETICAL AND ENVIRONMENTAL FACTORS AFFECTING PERFORMANCE OF LAYING HENS

#### AND THEIR CROSSES

Βv

#### ESAM FOUAD ABD EL-HAMIED

B.Sc. Agric. Sci. (Animal Production) Ain-Shams Univ. 1981

M.Sc. Agric. Sci. (Poultry Breeding) Ain-Shams Univ. 1988

Under the supervision of:

Prof. Dr. M.F. Amer Professor of Poultry Breeding Poultry production Department Faculty of Agriculture Ain Shams University

Prof. Dr. M.A. El-Zeiny Professor of Poultry Nutrition Poultry production Department Faculty of Agriculture Ain Shams University

Prof. Dr. Y.M. Abd El-kader Professor of Poultry Breeding Poultry production Department Animal Production Research Institute Agriculture Research Center Ministry of Agriculture

#### ABSTRACT

The present study was designed to evaluate some economical traits and to estimate some genetical traits for purebred and crossbred progenies under three different systems of feeding. The results showed superiority of crosses compared with the purebred chicks in body weight and egg production. Also, feed restriction increased egg number and egg weight. Egg components although were affected due to genetic groups, yet feed restricted had no effect.

(Key Words: Crossbreeding, feed restriction, laying hens)



#### Approval Sheet

### A STUDY OF SOME GENETICAL AND ENVIRONMENTAL FACTORS AFFECTING PERFORMANCE OF LAYING HENS

AND THEIR CROSSES

Ву

#### ESAM FOUAD ABD EL-HAMIED

B.Sc. Agric. Sci. (Animal Production) Ain-Shams University, 1981

M.Sc. Agric. Sci. (Poultry Breeding) Ain-Shams University, 1988

This thesis for Ph.D. degree has been approved by:

Prof. Dr. F. Hassan Abdou F. H. Aldam

Prof. of Poultry Breeding, Monoufia University.

Prof. Dr. M. Soliman Khatab Mis. Kumilo

Prof. of Poultry Breeding, Suez Canal University.

Prof. Dr. M. Fikry Amer

Prof. of Poultry Breeding, Ain Shams University.

Date of examination: 3 // /1993.

#### ACKNOWLEDGMENTS

The author wishes to express his deep sincere appreciation and gratitude to Professor Dr. M.F. Amer, Professor of poultry breeding in the Poultry Production Department, Faculty of Agriculture, Ain Shams University, who suggested the problem, supervision and keen interest during the experiment. To Professor Dr. M. El-Zeiny, Professor of Poultry Nutrition in the Poultry Production, Faculty of Agriculture, Ain Shams University for his close supervision, constructive criticism, encouragement and revising the manuscript entire investigation. Without their help, the time they spent and interest they have shown, statistical analysis and the progress of the work would have never been completed.

Special thanks are directed to Dr. Y.M. Abd El-Kader. Professor of Poultry Breeding, Animal Production Research Institute, for his close supervision, his help and providing facilities required for this study.

My deepest thanks to Dr. K. Shahin, assistant Professor of Animal Breeding, for her help in solving statistical analysis problems.

My deepest thanks to the staff of the Poultry Production Department for their help throughout this work.

To my colleagues, the staff of the experimental station, Barrage, I am greatly indebted for their help

throughout this work.

Finally, I also wish to express my deeply gratitude to my wife and my daughter for their help and continuous encouragement. Without their help, I could not complete this study.

## 

#### TABLE OF CONTENTS

|      |                                                                                                                                                                                                                                                                                                                                      | Page                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| I.   | INTRODUCTION                                                                                                                                                                                                                                                                                                                         | 1                                                  |
| II.  | REVIEW OF LITERATURE                                                                                                                                                                                                                                                                                                                 | 3                                                  |
|      | The influence of the main factors.  1. Body weight                                                                                                                                                                                                                                                                                   | 3<br>3<br>3<br>5<br>7<br>7<br>7<br>9               |
|      | 3.1. Influence of crossing. 3.2. Influence of feed restriction. 4. Egg quality                                                                                                                                                                                                                                                       | 9<br>12<br>12<br>15<br>17<br>17<br>18<br>18<br>18  |
| III. | MATERIALS AND METHODS                                                                                                                                                                                                                                                                                                                | 20                                                 |
|      | <ol> <li>Location and experimental period</li> <li>Experiment birds</li> <li>Experiment design of feeding</li> <li>The measurement characters</li> <li>Statistical analysis</li> </ol>                                                                                                                                               | 20<br>20<br>21<br>22<br>25                         |
| IV.  | RESULTS AND DISCUSSION                                                                                                                                                                                                                                                                                                               | 29                                                 |
|      | The influence of the main factors.  1. Live Body weight.  1.1. Influence of crossing.  1.2. Influence of feed restriction.  2. Rate of growth.  2.1. Influence of crossing.  2.2. Influence of feed restriction.  3. Feed consumption.  3.1. Influence of crossing.  3.2. Influence of feed restriction.  4. Age at sexual maturity. | 29<br>29<br>29<br>31<br>48<br>48<br>49<br>61<br>61 |
|      | 4.1. Influence of crossing                                                                                                                                                                                                                                                                                                           | 68<br>68                                           |

|                                          | rage |
|------------------------------------------|------|
| 5. Egg production                        | 73   |
| 5.1. Egg number                          | 73   |
| 5.1.1. Influence of crossing             | 73   |
| 5.1.2. Influence of feed restriction     | 74   |
| 5.2. Egg weight                          | 76   |
| 5.2.1. Influence of crossing             | 76   |
| 5.2.2. Influence of feed restriction     | 76   |
| 6. Egg quality                           | 87   |
| 6.1. Egg shape index                     | 87   |
| 6.1.1. Influence of crossing             | 87   |
| 6.1.2. Influence of feed restriction     | 89   |
| 6.2. Shell                               | 88   |
| 6.2.1. Influence of crossing             | 88   |
| 6.2.2. Influence of feed restriction     | 89   |
| 6.3. Albumen                             | 90   |
| '6.3.1. Influence of crossing            | 90   |
| 6.3.2. Influence of feed restriction     | 92   |
| 6.4. Yolk                                | 93   |
| 6.4.1. Influence of crossing             | 9.3  |
| 6.4.2. Influence of feed restriction     | 94   |
| 6.5. Haugh Unit                          | 95   |
| 6.4.1. Influence of crossing             | 95   |
| 6.4.2. Influence of feed restriction     | 95   |
| 7. Viability                             | 103  |
| 1.1. Influence of crossing               | 103  |
| 1.2. Influence of feed restriction       | 104  |
| 8. Breed of sire and dam                 | 109  |
| 8.1. Live Body weight                    | 109  |
| 8.1.1. Breed of sire                     | 109  |
| 8.1.2. Breed of dam                      | 109  |
| 8.1.3. Breed of sire and dam interaction | 110  |
| B.2. Feed consumption                    | 115  |
| 8.2.1. Breed of sire                     | 115  |
| 8.2.2. Breed of dam                      | 115  |
| 8.2.3. Breed of sire and dam interaction | 115  |
| 8.3. Age at sexual maturity              | 119  |
| 8.3.1. Breed of sire                     | 119  |
| 8.3.2. Breed of dam                      | 119  |
| 8.3.3. Breed of sire and dam interaction | 119  |
| 8.4. Egg production                      | 119  |
| 8.4.1. Breed of sire                     | 120  |
| 8.4.2. Breed of dam                      | 120  |
| 8.4.3. Breed of sire and dam interaction | 120  |
| 8.5. Egg quality                         | 127  |
| 8.5.1. Breed of sire                     | 127  |
| 8.5.2. Breed of dam                      | 128  |
| 8.5.3. Breed of sire and dam interaction | 129  |
| 9. Phenotypic correlations               | 136  |
| 9.1. Correlation among body weight       | 136  |
| 9.2. Correlation among feed consumption. |      |
| age at sexual maturity, age at 20%       |      |
| OF BOO BLOODERION BOOK BANDOR BAND       |      |

|            |                         | rage |
|------------|-------------------------|------|
|            | egg weight              |      |
| <b>v</b> . | SUMMARY AND CONCLUSIONS | 148  |
| VI.        | REFERENCES              | 152  |
| VII.       | ARABIC SUMMARY          |      |

#### LIST OF TABLES

| Table |                                                                                                                 | Page |
|-------|-----------------------------------------------------------------------------------------------------------------|------|
| 1.    | Symbols and their description                                                                                   |      |
| 2.    | Starter, grower and layer ration nutritive and chemical values                                                  | 22   |
| Э.    | Means (g) of body weights in different breeds at different ages                                                 | 37   |
| 4.    | Least-squares means (g) of body weight in sexes at different ages                                               | 41   |
| 5.    | Least-squares means (g) of body weight in different breed groups at different ages                              | 42   |
| 6.    | Least-squares means (g) of body weight in different treatments at different ages                                | 43   |
| 7.    | Least-squares analysis of variance for body weight at different ages                                            | 44   |
| 8.    | Percent of beterosis in different ages of different treatments                                                  | 46   |
| 9,    | Rate of growth of body weight at different ages                                                                 | 53   |
| 10.   | Least-squares mean of feed consumption at different ages for breeds and crosses                                 | 63   |
| 11.   | Least-squares mean of feed consumption at different ages for different treatments.                              | 64   |
| 12.   | Least-squares analysis of variance for feed consumption at different ages                                       | 65   |
| 13.   | Age at sexual maturity and at 20% production in days                                                            | 70   |
| 14.   | Least-squares analysis of variance at sexual maturity and 20% production                                        | 71   |
| 15.   | Least-squares mean of egg number and egg weight at 3, 6, 9, 12 month after sexual maturity for the purebred and | 79   |

| 29. | dam and treatments for age at first egg, 20% production, egg number and egg weight at 1-12 month after production                                                                 | 122 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 30. | Least-squares analysis of variance of breed of sire, dam and treatment for age at first egg, 20% production, egg number and egg weight at 3, 6, 9, 12 month after sexual maturity | 125 |
| 31. | Least-squares analysis of variance of breed ofsire and dam for age at first egg. 20% production, average egg number and egg weight at 3, 6, 9, 12 month after production          | 126 |
| 32. | Least-squares means (gm.) of breed of sire, dam, and treatment for different egg components                                                                                       | 130 |
| 33. | Least-squares analysis of variance for breed of sire, dam, and treatment for egg components                                                                                       | 132 |
| 34. | Least-squares analysis of variance for breed of sire and dam for egg components.                                                                                                  | 134 |
| 35. | Correlation among body weight at different ages                                                                                                                                   | 137 |
| 36. | Correlation among feed consumption, age at first egg, age at 20% of production, average egg number and egg weight at 3, 6, 9, 12 month of production                              | 141 |
| 97  | Correlation between and components                                                                                                                                                | 146 |

#### LIST OF FIGURES.

| Figure                                                                                                                        |     |
|-------------------------------------------------------------------------------------------------------------------------------|-----|
| <ol> <li>Effect of feed restriction on growth rate at<br/>different age intervals for Gimmizah<br/>females</li> </ol>         | 57  |
| <ol> <li>Effect of feed restriction on growth rate at<br/>different age intervals for New Hampshire<br/>females</li> </ol>    | 58  |
| <ol> <li>Effect of feed restriction on growth rate at<br/>different age intervals for GM X NH crosses<br/>females.</li> </ol> | 59  |
| 4. Effect of feed restriction on growth rate at different age intervals for NH X GM crosses females                           | 60  |
| <ol> <li>Feed consumption for different genetical<br/>groups at different ages</li></ol>                                      | 66  |
| 6. Feed consumption for different treatments at different ages                                                                | 67  |
| 7. Age at sexual maturity and at 20% production for different treatments                                                      | 72  |
| 8. Egg number for different genetical groups at different ages after sexual maturity                                          | 83  |
| <ol> <li>Egg weight for different genetical groups at<br/>different ages after sexual maturity</li> </ol>                     | 84  |
| 10. Egg number for different treatments at<br>different treatments at different ages after<br>sexual maturity                 | 85  |
| 11. Egg weight for different treatments at different treatments at different ages after                                       | 0.6 |

#