W

ph arince

PHTSIOLOGICAT STUDIES ON PAPAYA FAULTS

BY

HANAA AHMED ZAKT
B.Sc., Cairo University, 1965

Thesis

Submitted in Partial fulfilment of the Requirements
for the Degree of
"MASTER OF SCIENCE"
in the

Department of Horticulture

Faculty of Agriculture
Ain Shams University

4559

634-651 H. A

1971

The Thesis of Hanas Ahmed Zaki

is approved:

A. Lalat Magazy
Salah Maham I Shahy

Committee

Ain Shams University

1971

/ CKNOWLEDGEMENTS

I wish to express my sincere thanks to Prof. Dr. A.L. El-Tomi, Head of Horticulture Department for sponsoring the work reviewing the text and for his constructive criticism.

I am profoundly grateful to Prof. Dr. Salah
El-Nabawy and Dr. Abdel Mongy Abou Aziz for supervising,
continuous advice and their kind help in the preparation
of the thesis.

Grateful acknowledgement is also expressed to the National Research Centre, for the facilities given which made this work possible.

Table of Contents

	Page
INTRODUCTION	. 1
History	. 3
Botany	. 5
Aim and Scope	. 6
REVIEW OF LITERATURE	. 7
I. Physical and Chemical Changes Cocuring during	
Growth and Development	. 7
1. Fruit Weight	7
2. Fruit Volume	8
3. Total Soluble Solids	8
4. Titeratable Acidity	. 8
5. Ascorbic acid contents	9
6. Chlorophyll and Carotene contents	10
7. Total sugars	11
8. Specific activity of papain enzyme	12
II.Storage of Papaya Fruits	14
1. Loss in weight	16
2. Total soluble solids	17
3. Titeratable acidity	18
4. Ascorbic acid contents	
5. Chlorophyll and carotene contents	•

	Pago
6 Respirational activity	21
MA ERIAL AND METHODS	23
WESULTS AND DISCUSSION	28
1. Physical and chemical characteristics of the	
muits during growth and development	
A- Physical changes of the fruit during development	t
l. Changes in fruit weight	
2. Changes in fruit volume	32
B- Chemical changes of the fruit during development	36
1. Changes in dry matter content	36
2. Changes in total soluble solids	39
3. Changes in titeratable acidity	42
4. Changes in ascorbic acid contents	45
5. Changes in total sugars.	48
6. Changes in total chlorophyll content in the	
peel	51
7. Changes in total chlorophyll content in the	_
pulp	54
8. Changes in total carotenoids in the peel	
9. Changes in total carotenoids in the pulp	<i>57</i>
10. Specific activity o papain enzyme	

Page

II. Physical and compositional changes in papaya fruits	
during storage	66
1. Weight loss	66
2. Percentage of decay	69
3. Total soluble solids	72
4. Titeratable acidity	7 5
5. Ascorbic acid contents	78
6. Total Chlorophyll in the peel	81
7. Total carotenoids in the peel	84
8. Total carotenoids in the pulp	87
9. Respirational activity of papaya fruits	90
CONCLUSION	93
SUMMARY	98
RECERENCES1	
ARABIC SUMMARY	

List of Tables

Table	T.a	1E0
1	Effect of flowering time on fruit weight of papaya fruits at various stages of development. 3	0
2	Effect of flowering time on fruit volume of papaya fruits at various stages of development. 3	
3	Effect of flowering time on percent dry matter	
	of papaya fruits at various stages of develop-	57
4	Effect of flowering time on total soluble solids of papers fruits at various stages of develop-	
5	Effect of flowering time on percent acidity of	40
-	papaya fruits at various stages of development. Effect of flowering time on Ascorbic acid cont-	43
6	ents of papaya fruits at various stages of de-	46
7	Effect of flowering time on total sugars of	
8	papaya fruits at various stages of development Effect of flowering time on total chlorophyll	49
	ious stages of development	5 2

Table		Page
9	Effect of flowering time en total chlorophyll	
	contents in the pulp of papaya fruits at var-	
	ious stages of development	5 5
10	Effect of flowering time on total carotenoids	
	in the peel of papaya fruits at various stages	
	of development	58
11	Effect of flowering time on total carotenoids	
	in the pulp at various stages of development	61
12	Affect of flowering time on specific activity	
	of papain enzyme of papaya fruits at various	
	stages of development	64
13	Effect of different storage temperatures on	
	weight loss percentage of papaya fruits	67
14	Effect of different storage temperatures on	
	percentage decay of papaya fruits	70
15	Reflect of different storage temperatures on	
	percentage of total soluble solids of papaya	
	fruits	73
16	Effect of different storage temperatures on	
	percentage of acidity of papaya fruits	76

Table		Page
17	Effect of different storage temperatures on as-	
	corbic acid content of papers fruits	7 9
18	Rffect of different charage temperatures on	
	total chlorophyll in peel of papaya fruits	82
19	Effect of different storage temperatures on to-	
	tal carotenoids in peel of papaya fruits	85
S 0	Effect of different storage temperatures on to-	
	tal carotenoids in pu.p of papaya fruits	. 8 8
51	Respirational activity of papaya fruits during	
	ripening	91

Met of fire of

igure 1	Page
1 Effect of flowering time on fruit weight of	
papeys fruits at various stages of development.	31
2 Effect of flowering time on fruit volume of	
papaya fruits at various stages of development	35
3 Effect of flowering time on percent dry matter	
of papaya fruits at various stages of develop-	
ment	38
4 Effect of flowering time on total soluble solids	
of papaya fruits at various stages of develop-	
ment	41
5 Reflect of flowering time on percent acidity of	
papaya fruits at various stages of development.	5 4
6 Effect of flowering time on Ascorbic acid cont-	
ents of papaya fruits at various stages of de-	
welopment	47
7 Effect of flowering time on total sugars of	
papaya fruits at various stages of development.	5 0
8 Effect of flowering time on total chlorophyll	
contents in the peel of papaya fruits at var-	_

Pigur	`	Page
	1ous stages of development	53
9	Effect of flowering time on total chlorophyll	
	contents in the pulp of papaya fruits at var-	
	ious stages of development	56
10	Effect of flowering time on total carotenoids	
	in the peel of papeys fruits at various stages	
	of development	59
11	Effect of flowering time on total carotenoids	
	in the pulp at various stages of development	62
12	Effect of flowering time on specific activity	
	of papain enzyme of papaya fruits at various	
	stages of development	65
13	Effect of different storage temperatures on	
	weight loss percentage of papaya fruits	6 8
14	Effect of different storage temperatures on	
	percentage decay of papaya fruits	71
15	Effect of different storage temperatures on	
	percentage of total soluble solids of papaya	
	fruits	74
16	Effect of different storage temperatures on	
	percentage of acidity of papaya fruits	77

P1gur	e e e e e e e e e e e e e e e e e e e	Page
17	Effect of different storage temperatures on	
	ascorbic acid content of papaya fruits	80
18	Effect of different storage temperatures on to-	
	tal chlorophyll in peel of papaya fruits	83
19	Effect of different storage temperatures on to-	
	tal carotenoids in peel of papaga fruits	86
20	Effect of different storage temperatures on to-	
	tal carotenoids in pulp of papaya fruits	89
21	Respirational activity of papaya fruits during	
	ripening	92

INTRODUCTIC:

The papaya is widely cultivated throughout the tropic and subtropic regions for their large melon-like fruits. It is now planted on a large scale in Florida, Hawaii, East & South Africa, Ceylon, India, the Malay Archipelago, Australia and many other countries to supply local and export fresh fruit markets, and as a source of the papain enzyme.

Merory (1960) reported that papaya is a tropical melon fruit which grows on trees, and the natives call it the "fruit of the angels".

The unripe papaya fruit contains the enzyme "papain" one of the most powerful digestants known ingredient of most meat tenderizers. The ripe fruits contains vitamins Λ , B_1 , B_2 and C also iron, calcium, and phosphorus. Papain is absent from the ripe fruit and its juice. Papaya, banana fruit flavour and apple essence make a good combination.

Ripe papaya fruit contains little or no starch but run from 7 to 9 percent or higher in total sugars. Their main use is as a fresh dessert or salad fruit. There is a great variation in flavour even with fruit from the same plant. They are highest in sugar content when matured in hot summer months. Ripe papaya fruits are also used for making fresh or carbonated soft drinks, ice cresm flavouring, jam, canned balls or cubes in sirup, crystallized fruit, pickles, and dried candied pulp. The stems and leaves contain small amounts of the alkaloid "carpain", a heart stimulant. The tender tips are used as greens.

In addition to its popularity as a fresh fruit, the papaya is of even greater value as the source of papain, a proteclytic ensyme similar in action to pepsin and trypsin. In fact, long before dried papaya latex became a commercial product, it was known that the juice from green fruit or leaves would tenderize the toughest meat. At present, papain finds use as a beer clarifier, in meat tenderizing solutions, and as a drug for digestive ailments.

United States imported about 180,000 Kgs of powdered latex in 1951, mostly from East Africa and Ceylon.

In Egypt it is grown in few scattered areas, such as the Barrage Experiment Station, Ministry of Agriculture, at Anshas, at the Basatin Island in Aswan and at the farms of the faculties of Agriculture. It is also planted in many private gardens especially at Alexandria, U.A.R.