AN INVESTIGATION OF THE SWIRLING FLOW THROUGH AN ANNULAR DIFFUSER

b y

Mohamed Mohame Allia IBRAHIM M. M. A. SHABAKA

B. Sc. (Mech. Eng.) Hons.
Cairo University

رودين

5380

621 01

'Thesis submitted in accordance with the requirements of Ain Shams University for the degree of Master of Science in Mechanical Engineering.'

Mechanical Engineering Department
Faculty of Engineering
Ain Shams University
July 1973

Was a Way of the state of the safety will be

PER ONG AN ANNUAR DEFUSIR

ь у

IBKAHIM M. M. A. SHABAKA B. Sc. (Mech. Eng.) Hons.

(Cairo University)

'Thesis submitted in accordance to the requirements of Ain Shams University for the degree of Master of Science in Mechanical Engineering'.

Supervised by:

Prof. A.A.RIZK

Dr. M.R.A.SHAALAN

Professor, Mech. Dept., Faculty of Engineering, Ain Shams University

Lecturer, Mech. Dept., Faculty of Engineering, Ain Shams University

5380

Mechanical Engineering Department Faculty of Engineering Ain Shams University

July , 1973

AN INVESTIGATION OF THE SWIRLING FLOW THROUGH AN ALTHULAR DIFFUSER

رسالــة مقدمـــة مــــن

مهندس ابراهرم محمد محمد على شبكيه بكالسوريوس الهندسة الميكانيكيسة (مرتبة الشرف) كليسة الهندسة سجامعة القاهرة

للحمسول هلسسى درجسة الميكانيكية درجسة الماجستسيرفى الهندسة الميكانيكية ________

Examinars:

لجنة الحكم على الرسالة:

استاذ دكتور خليل حسن خليل المستاذ دكتور خليل حسن خليل المستاذ دكتور خليل حسن خليل المستاذ ورئيس قسم الهندسة المبكانيكية كلية الهندسة المستاذ ورئيس قسم الهندسة التاحرة

Prof. A. A. RIZK استاذ دكتور عبد المنصم احمد رزق المحمد المناف المحمد المناف المحمد المناف المحمد المناف المحمد المناف المحمد ا

استاذدكتور سعير محمدعبدالخنى المناقدة المناذدكتور سعير محمدعبدالخنى المناقدة المناق

PREFACE

This dissertation is submitted for the dogree of Master of Science in the Eaculty of Engineering of Ain Shams University.

The work described in this thesis was carried out, unless otherwise indicated, by the author in the Department of Mechanical Engineering, Faculty of Engineering, Ain Shams University and the Scientific Computation Centre of Cairo University from October, 1969 to May, 1973.

No part of this thesis has been submitted for a degree at any other university.

M.M. Shabaka
 June, 1973.

MOKEMALEDUCE ANDS

The author wishes to express his gratitude to his supervisors, Professor Dr. Abd-Il Monem A.Rizk and Dr. M. R. A. Shaalan, of the Mechanical Engineering Department, Faculty of Engineering, Ain Shams University, for their guidance and constant encouragement throughout. Also, their criticism and follow up were felt essential in the preparation of this thesis.

Grateful admowledgement is due to Professor J.H.

Horlock *

Vice-Chancellor of the University of Salford,

Manshester, England, for the provision of published material on the subject of the present work and also for his invaluable advice during the course of this project.

Thanks are due to the technical staff of the Mir Conditioning and Heat Engineering Laboratories in the Mechanical Engineering Department, Faculty of Engineering, Ain Shams University, for their assistance in the preparation of the test apparatus.

The author would like to thank the technical staff

^{*} At present, Professor of Engineering and Director of the S.R.C. Turbonachinery laboratory, Cambridge University, England.

of the National Research Centre, Dokki, Cairo, for their co-operation and excellent craftsmanship in manufacturing the apparatus.

Thanks are due to Mr. Mamdouh A. El-Said for his excellent work in typing the manuscript.

Finally, the author wishes to express his sincere thanks to his parents whose patience and continuing encouragement constituted a major source of inspiration for him during the whole period of study.

000

AN INVESTIGATION OF THE SWIFLING FLOW MIRCUCH AN ADMULAR DIFFUSER

SUMMARY

This dissertation sets out to investigate the performance of an annular diffuser of cylindrical centre body (hub) and conical casing, in conditions of swirling flow over a range of Reynolds number. The cone angle of the casing is 15° and the overall area ratio is 7.13.

For the purpose of the present work a special test rig was constructed, consisting of an annular diffuser, a fan, and a swirl generator. The rig was also provided with suitable instrumentation. The value of Reynolds number was varied by changing the mass flow rate through the diffuser by means of a butterfly valve at fan discharge. The degree of swirl was controlled by means of a special mechanism connected synchronously to the swirl vanes.

Tests were carried out on the above diffuser at various degrees of swirl. In each test, the flow was surveyed at various sections along the diffusor length. In each survey, records of static pressure, total pressure, and yaw angle were taken at several positions along radius. From these means urements, the local, as well as the overall performance of the

diffuser were derived and discussed in detail. The holeviour of the observed performance was also interpreted in the light of the detailed picture of the flow that was obtained from measure ments.

The non-viscous flow through the diffuser passage was calculated using the streamline-curvature approach. Results of this calculation were displayed in the form of meridional streamlines and axial velocity profiles. Also, the boundary layer development on the diffuser walls was computed and the predicted onset of separation was compared with observations.

Results of the present investigation indicate that:

- (i) In general, there is a 'marked' effect of swirl on the overall performance of the annular diffuser. In particular the performance appears to improve for degrees of swirl below 20 but deteriorates thereafter.
- (ii) There is a distinct effect of swirl on the onset of boundary layer separation from diffuser walls. At no swirl, separation takes place on the casing. At low and moderate swirls, separation starts on the hub then on the casing. At high swirls, separation is still on the hub but seems to disappear from

(hg4 4 %

NOTATION

```
acoustic velocity.
a
              area, or
A
              function of \delta, \mathbb{T}, \omega, \varepsilon, (See Thapter 5).
\mathbf{B}
              constant in the law of the wall.
             velocity.
c
c_{\mathbf{p}}
              specific heat at constant pressure.
c^{x}
              specific heat at constant volume.
Cfs
              streamwise component of wall shear stress
              coefficient = \mathcal{T}_{vs} / \frac{1}{2} \mathcal{P} U^2
C_{\rm p}
              pressure recovery coefficient.
i_{\rm q}{}^{\rm D}
              ideal pressure recovery coefficient.
D
             diameter.
E
             non-dimensional rate of entrainment.
              function of \delta, \mathbb{T}, \omega, \varepsilon_{w} (see Chapter 5).
G_1, G_2, ...etc. Functions of TT, k ( see Appendix D).
G_1', G_2'.etc. = dG_1/dT, dG_2/dT, ...etc.(see Appendix D).
              stagnation enthalpy.
h_{\alpha}
             boundary layer shape factor = \kappa_s^* / \theta_{ss} (see Chapter 5).
Н
             Heads entrainment shape factor = (\delta - \xi_s^*)/\theta_{ss} (see
              Chapter 5).
             Von Karman constant.
k
              convergence or divergence of streamlines at edge
K_{7}
              of boundary layer (Eq. 5.10.b).
```

,c for condition with no swirl.

old for old values before iteration.

r for the radial direction.

ref. for reference values.

s for the streamwise direction.

x for the axial direction.

y for the circumferential direction.

w for wall conditions.

Superscripts:

- non-dimensional, or

average value (Appendix B).

differentiated value.

. time rate.

Abbreviations:

AR area ratio.

AR_H area ratio of Headley's diffuser (=4.61)(Ref.(16)).

D.Z. Differential Equation.

Eq. Equation.

Reynolds number = $\frac{C_{xi}(2\Delta Y_i)}{y}$

Symboles and Abbreviations Used in Computer Output(Tables VI-VIII), and Flow charts (Figs. 10,12,14):

```
absolute Value
ABS.
         angle &
LPHA
          angle
ANG
         angle 5
DETA
          \mathtt{C}_{\mathtt{fs}}
CF
          coefficient.
COEF.
CP
            C<sub>pmass</sub> (Eq.A.1)
CPl
CP2
            Cparea (Eq. A.2)
            Cpswirl, mass(Eq.A.3)
CP3
CTH
CX
             c^{x}
CXO
            c_{xi}
            r<sub>ci</sub>/R
CURV AT1
        3d /3r
DALPHA
            ∂c<sub>x</sub> /∂x
DCX
         degree
DEG.
DELTA
         3
DPHI/DR 80/3r
      streamline shift (r<sub>new</sub> - r<sub>old</sub>)
\mathtt{DR}
DSTARX 5
```

```
-x*:11)
```

```
c_p / c_{pI} = ?
EF
              c_{p_{mass}}/c_{pI} = \gamma_{mass}
c_{parea}/c_{pi} = \gamma_{area}
c_{pswirl,area}/c_{pi} = \gamma_{swirl,area}
EFL
EF2
IF3
EPSILO
               tan \alpha, or [ g c_m r_{new} \cos \emptyset]
F
              from the from from from to fine for hub to (r).
FI
               1 dy
U dn
GN
               l du
ū ds
GS
Η
               Η
              control variable
ID
IS
             control variable
K
              no. of the annulus
KK
             control variable
KH
              K_{\tau}
           k_{\rm p}/m^2
KP/M2
LLL
              Number of the radial calculating plane
M
               16
P
               р
PHI
               Ø
PI
POS.
             position.
PRESS.
          pressure.
```

P TOTAL Po

RAD. radius,(r).

RE Re

RECOV. recovery

RHO ?

RO r_{ci}

RT1 rci

R2 r_{new}

T or t

TGT. tangential

THETAIL θ_{SS} S

THETAX $\theta_{XX} = \int_{0}^{\infty} (1 - \frac{u}{u}) \frac{u}{u} (1 + \frac{z}{r_w}) dz$, axisymmetric definition.

U/UU u/U

VIL velocity

V/U v/u

V/U V/U

 \mathbf{W} ω

Z

List of Subroutines:

Name Function

AV Integration and everaging process.

DATSM Smosthing of data.

DERIV Computation of As. & Fs. (Eq.5.9).

DYDDX Formation of D.E. (5.1).

MRST	Computation	OΞ	terms	$\circ f$	D.H.	(5.1)	
------	-------------	----	-------	-----------	------	-------	--

PKN	Rung-Kutta	method	ror	solving	simultaneous	D.Es.
-----	------------	--------	-----	---------	--------------	-------

RLDIF Differentiation.

PLINP Computation of K_1 , $\frac{1}{U} \frac{dU}{ds}$, $\frac{1}{U} \frac{dU}{dn}$ & tanx.

SHAB Solution of algebraic equation.

SIMQ Solution of linear equations.

SPINT Interpolation or differentiation on the spline curve.

SPLIC Determination of spline co-efficients.

STDIV Equal division of mass flow among annuli.

ZFIII Determination of new radii, for equal mass flow rate per amulus.

_ ==== ====