PACTORS INFLUENCING THE EFFECIENCY
OF SOME MICROBIAL ENTOMOPATHOGRAS
ON SOME LEPIDOPTEROUS PLANT PESTS

A THESIS

Presented To The Faculty of Science
Ain Shams University

For the Award of

The Ph. O. Degree

1384

B y

WEDAD AHMED ALY ATWA

B. Sc. - M. Sc.

Assistant Researcher - National Research Centre

Department of Entomology
Faculty of Science
Ain Shams University

1974

1. INTRODUCTION

The past two decades have witnessed a marked revival of interest in the microbial mathod of insect pest control. This resulted from a growing realization of the fact that supplements and alternatives to other control methods, particularly the use of chemical insecticides, are needed to overcome some of the faults and weaknesses now recognized as inherent in the latter methods.

The soope of microbial control investigations is now considerably extended. Such extension is expressed in many ways, mostly noticed in the increasing use of entomorathogens against various insect pasts. It is also obvious in the increase in basic research dealing with the pathogens themselves, their virulence and factors influencing their efficiency ... etc.

The study of environmental factors significant in the field of insect pathology is an important aspect. Such factors play a considerable rule in the development of pathogens, their subsequent infection of the host, their survival and virulence within the host and to alimited extent in the host susceptibility. The factors to be studied should include the radiation, temperature, humidity, chemical insecticides, biological factors and mechanical injuries.

- 7- Testing the influence of other microorganisms (polyhedrosis virus) on the vintility and virulence of Eggillus theringiensis using the cri-silk worm, Philosogia riciri Boisd, and the cotton less worm, Spodonters littorship Boisd.
- 6- Testing the influence of mechanical injuries on the incidence of natural diseases and mortality among the eri-silk worm and the cotton leaf worm.

II. LITERATURE REVIEW

the improvement and success of the utilization of the entempathogenic microorganisms in the microbial insect control attempts depend mainly on the surrounding environmental conditions. So the application of this method in insect control depends on the understanding of interrelationabiles between host insect, pathogen and environment.

1- Test insects:

1) The eri-silk worm, Philosamia ricini Boisd.

Chowdhury (1960), cleared out that Attacus ricini
Boisd. is a synonym of Philosamia ricini.

Philosamia ricini boisd. suffers from the diseases of mullberry silk worm, pebrine, flacherie, grasserie, muscardine and added that in one brood, worms died with symptoms pointing the pebrine and in one lot the worms died from diseases showing the symptoms of muscardine. Chowdhury (1960), reported that Attacus ricini Boisd. suffers heavily from pebrine and flacherie, but it is very resistant to grasserie. Mogahed (1967), isolated fungus identified as Asperigillus lutescens from diseased caterpillars.

- The insect and found to be all nully parce, wills to Bacillus thuritaiensis atranta (hafer, Arify and Merdan, 1969). Also the insect was found to be highly susceptible to polyherrosis virus (Abul-Masr 1996).
- The imported cabbage worm, Pieris rapec L.

 The insect was found to be highly susceptible to

 Bacillus thuringiensis varieties and strains under both
 laboratory and field experiments, (Heimpel and Angus 1850);
 (Heimpel and Lloyed, 1959); (Ackwen, Glass, Davis, and
 Splittstoesser, 1960); (Jaques and Form, 1960); (Abdel-Rahman
 1966); (Atwa, 1969) and others. Also the insect was found
 to by susceptible to polyhedrosis virus (Tanada, 1953).

2- Entomopathogens :

1) Bacteria

Berliner (1911), was the first to isolate <u>Bacillus</u>
thuringiensis varo thuringiensis strains from diseased larvae
of the Mediterranean flour moth, <u>Anagasta</u> (<u>Ephestia</u>) <u>Kuhniella</u>
Zell.

Ellinger and chorine (1930), indicated that Bacillus thuringieneis is synonymous with Bacillus cereus.

These Backs as effective entersystic end during the last four decades.

Huss (1928, 1929, and 1930) suggested the vec of Bacillus thuringionsis for controlling the European corn. borer, Propasta nubilalis (Hb...).

Mattes (1927), could in cet Ephestia larvae with Bacillus thuringiessis through the mouth.

Metalpikov and Charine (1929), found Bacillus
thuringiensis to be patho, enic to a large group of insect
species and was mainly virulent to lepidopucrous larvae.

Steinhaus (1949), tested the pathogenicity of <u>Bacillus</u> thuringiensis against several insect species and found that it could be used as a virulent and effective bacterial insecticide.

From these and other studies, <u>Bacillus thuringiensis</u>
var. thuringiensis strains could be considered as effective
against a large group of lepidopterous larvae; e.g. the
alfalfa caterpillar; <u>colias philodice eurytheme</u> Boisd.

(Steinbaus, 1951); the European cabbage worm <u>Pieris brassica</u>el.

(Kreig, 1957 and Lemoigne et al;1956) the European corn borer

Prometa imbilatio Fem. (Lastouret, 1999); the sett cater ither Malacosoma neustria (Van damie and van Der Leat, 1990); Other lepidopterous pests in crucifers (Sanada , Sonkhieri, 1996); the silk worm, Bombyx mori L, the brown tail acti, Luproctis phocarrhoga and the gypsy moth, Lymantria dispar (Vankava, 1957).

abbage worm Pieris rage L., the cabbage looper Trichoplusia ni Hbn., and the red banded leaf roller, Argyrotaenia velotinana walker (Mc Ewen, Glass, Davis and splittstoesser 1960); the ailanthus web worm Atteva aurea and the fall web worm hyphantria cunea (Pall and Onnoha, 1962); the Indian meal moth Pludia interpunctella Hb. and the imported cabbage worm Pieris rapae L. (Abdel-Rahman, 1966); the cotton leaf worm, Spodoptera littoralis, the lesser cotton leafworm, Laphygma exigua, the pink ball worm Pectinophora gosspiella saund, the cut worm Agrotis ypsilon Rott. (Afify, Hufez and Merdan, 1969); the imported cabbage worm, Pieris rapae L. (Afify, Abdel-Rahman and Atwa 1970).

2) Virus

Polyhedrosis virus affecting nearly 200 species of Lepidoptera, Hymenoptera and Diptera have been reported (Hughes, 1957, Martignoni and Langston, 1960). This type of virus disease occurs mainly in Lepidoptera. The general appects of the infection caused by nuclear polyhedrosis have been discussed by a number of writers (Paillot 1930; Letje, 1939; pergold, 1943; 1953a; 1956a; Steinhaus, 1946, 1949a; Jahn, 1958; Smith, 1958, 1959; Krieg, 1961).

The occurrence of virus infection in insects under natural conditions may vary according to deveral environmental factors . the imported cabbage worm Pieris rapac L., (Tanada, 1953); the gypsy moth, Prothetria dispar L. (Vallis, 1957); the gamma noctuid, Plusia gamma (Vago and Cayrol, 1955); the california oak worm, Phryganidia california (Packard); the cotton leafworm, Spodoptera littoralis (Boisd.) (Abul-Nasr, 1956); the silk worm Bombyx mori L.; (Tokokawa and Yamaguch, 1960); the greater wax moth, Galler in mellonella (David and Martin 1962); the ballworms Heliothia zea (Ignoffa, 1966); and (Robert and Canerday, 1968); the Eastern tent caterpillar, Malacosoma americanum (Smirnoff, 1967a); greater wax moth Galleria mellonella L. (David and Martin, 1962); the bellworm , Helioths zea and the tobacco bud worms Heliothis virescencs. (Bullock et al ,1970); the bollworm Heliothis zea (Boddie) and the fall army worm, spodeptera frugiperda (Hamm and Young, 1971).

- La --

3- Musical environmental factors :

1) <u>lrradiation</u>

Laterjet & Elletio (1953), reported that reliation of longer wavelength (blue light) can inactive to bacterio-phages that the effect in this case is probably due to the production of toxic substances in the irradiated madium.

Aruga (1956), and Aruga and Yoshitake (1961), have provided evidence of inhibited development of viruses in irradiated insect larvae, but these investigators did not provide histological evidence.

Jafri (1963 and 1964), showed that the adults of certain rustared flour beetle, <u>Tribolium castaneum</u> and the confused flour beetle, <u>Tribolium confusum Diw</u>, exhibit an increased susceptibility to infection by <u>Bacillus</u> thuringiensis Berliner following exposure to sublethal and lethal doses of ionizing radiation.

Jafri (1965), indicated that when the confused flour beetle, <u>Tribolium confusum</u> Diw, receive <u>Bacillus thuringiensis</u>
Berl. following exposure to sublethal and lethal doses of

X-rays their life span is shortened to a week or at the most to a fortnight only. The insects did not give any significant increased or decreased in susceptibility when they receive <u>Bacillus</u> thuringiensis Berliner immediately

after an interval of 24 and 1... nours following exposure to sublethal and lethal doses of X-rays.

In (1966), Jafri found a decreased susceptibility in the silk worm <u>Bombyx mori</u> L. larvae injected with the polyhedrosis virus <u>Borrelinavirus bombycis</u>, following exposure to sublethal and lethal doses of X-rays.

The same auther, (1966), observed that the sublethal and lethal doses of ionizing radiation appeared to inhibit the development of virus of VND ("virose à noyaux denses") in the greater wax moth, Galleria mellonella L. larvae. In the same year, he exposed larvae of the same insect (two weeks old) to X-ray doses of 1,000, 10,000, 30,000 and 60,000 r. After twenty four hours, some of the irradiated larvae were infected with the virus VND (virose à noyaux denses). The larvae receiving 1,000 and 10,000 r showed a somewhat increased susceptibility to infection. The time of the death of 50% of the larvae (IT₅₀) receiving VND virus after exposure to 30,000 and 60,000 r was found to be several days later than non-irradiated infected larvae. It appears that sublethal and lethal doses of ionising radiation (30,000 and 60,000 r) inhibit the development of VND.

1) Ultraviolet irralation :

Eurger, on and Yanviras (1999), used altraviolet mays in destroying wout 95% of openes of <u>Bacillus thuringiensis</u> serl. In their tests on the Mediterranean flour moth, <u>Anagusta</u> (<u>Ephestia</u>) <u>Kuhniella</u> Zell. and the Duropean cabbare worm, <u>Pieris brassicae</u> (1).

David and Martin (1962), stated that the exposure for 65 minutes to ultraviolet light did not affect polyhedrosis, but the thirteen individual of greater wax noth Galleria mellonella Line, 5 minutes exposure to ultraviolet light increased mortality by polyhedrosis.

Yamwiras (1952), reported a definite reduction in the pathogencity of <u>Bacillus thuringiensis</u> Berliner to larvae of the Mediterranean flour moth, <u>Anagasta kühniella</u> Zell, when the spores were subjected to ultraviolet radiation.

According to Cantwell & Franklin. (1966), spores of Bacillus thuringiensis var. thuringiensis Berliner had effects when deleterrous/exposed on filters or glass slides to ultraviolet light, he stated that "a lamp of short-wave ultraviolet is very aseful in killing the spores that remain when a clean preparation of Bacillus thuringiensis crystals is being prepared".

Raun et al. (1906), four! of altrav let irradiation of a spore nowier of Bacillus thursesiencis var. thereingians is Berliner for 72 lours eliminated its pathogenicity for both insect, the full army worm, Spodoptera frugiperda and the duropean corn sorer Ostrinia nubilalis Hubber.

pavid and Magnus (1957), pointed out that ultriviolet irradiated virus which has been immediately exponed to intense visible light after ultraviolet radiation and before feeding to the larvae causes very significantly more deaths than ultraviolet irradiated virus which has not been subsequently exposed to visible light.

Gudauska et al (1968), found that infectivity of Trichoplusia nuclear polyhedrosis viruses was greatly reduced by exposures of 4 ~ 10 minutes to ultraviolet at 2 inches. Total inactivation did not occur after 60 minutes, but did after 120 minutes. Effect of ultraviolet on both viruses (Heliothis and Trichoplusia nuclear-polyhedrosis viruses) was progressively lessened as distance from light source to virus increased. No reduction in infectivity of either virus occurred at an exposure distance of 32 inches.

David (1969), indicated that when the known granuloses virus of the European cabbage worm, Pieris brassicae L. was exposed to ultraviolet radiation from a germicidal lamp

(predominantly 2/3.) nm / it was con ra, idly inactivated in pure films than in films of crade virus, where solved and solld imparities were resent. In both cross inactivation occurred more rapidly in wet films than in dry films. When the inactivating effect of ultraviolet of different wave lengths was compared using a highly purified virus preparation, it was found that this decrease i progressively as the wavelength was increased but that inactivation was still brought about by, at any rate, the shorter was ultraviolet radiation (291.5 - 320 nm) present in sunlight as it reaches the earth.

Bullock et al. (1970), irradiated a suspension of polyhedra of Heliothis polyhedrosis virus at 16 microwatts/cm² with narrow-band ultraviolet energy at wavelengths of 257 nanometer (nm), 307.5 nm and 364 nm and with broad-band energy in the visible and near infra-red range. They assayed for virulence with 20 mg larval boll worms, Heliothis Zea and tobacco bud worms Heliothis virescence. They found that wavelengths of 257 nm and 307.5 nm significantly inactivated virus, and 364 nm and the visible range may have inactivated it: Mortality was reduced 45 and 86.9 % in boll worm Heliothis Zea and tobacco bud worm Heliothis virescence, respectively, when they were assayed with a polyhedral suspension (1250 viral inclusions/mm² of diet surface) treated with monochromatic energy at 307.5 nm.

ii) infra-red radiation :

As far as the author is a ware no reliable information w4; found concerning the entect of infra-red radiations on the entomophagous microorganisms.

iii) Gamma radiation :

Duxbury and Sadun (1963), found an increased susceptibility of the irrediated malaria carrier mosquitoes,

Anopheles quadrimaculatus with gamma radiation to infection with Dirofilaria uniformis Cantwell & Franklin (1966), found that radiation by gamma source (400 R/min) was very time consuming since 400 minutes were needed to inactivate 97% of the spores.

Smirnoff (1967a), suggested that irradiation with doses of 100,000 rad or more are lethal to third and fourth instar larvae of the Eastern tent caterpillar, Malacosoma americanum. Exposure to radiations of 2,000,000 r. completely inactivates the polyhedra of the Eastern tent caterpillar, Malacosoma americanum. Development of the virus seems to be accelerated in larvae exposed to low doses of radiation.

The same author (1967c), recorded that growth of six entomophagous bacterial varieties were inhibited with gamma irradiation in the range 228, 280 to 456, 560 rads and suppressed at 500,000 rads and over <u>Bacillus thuringiensis</u> varentomocidus was the most sensitive.