12.6 cm coll

EVAPOTRANSPIRATION OF SOME CROPS

Ву

Meheb Ramay Semalka

B. Sc. Agriculture (Soils)

 Λ

Thesis

Submitted in Partial Fulfilment
of the Requirments For the Degree of
Master of Science
IN SOILS

7185

Soil Science Department Faculty of Agriculture, University of Ain Shams

A Contribution from

Baltim Agricultural Research Station,

Agricultural Research Center

A. R. E.

1975

APPROVAL SHEET

Name : Moheb Ramzy Semaika

Title : Evapotranspiration of Some Crops

Thesis Submitted for the Degree of Master of Science

in

Soil Science

This Thesis has been approved by:

D. Handi

S. Y. Melwally.

Date: 2/ //1975

ACIDIOUL EDGEMENT B

The investigation forming the subject of this
Dissertation was carried out in the Agricultural Soils
Department, Faculty of Agriculture, Ain-Shems University,
under the supervision of Professor Dr. Mason Handi.
Professor of Soil Science and Dr. Mahmoud Talha, Associate
Prof., Soils Department.

The author wishes to express his deepest gratitude and sincere thanks to them for their guidance, willing assistance and helpful kind advice throughout the course of this investigation.

. i .

CONTENTS

				Page
1.	DTR	oduce ion		1
2. :	MAI	eu of Literatu		3
ä	2.1	Bvepotrenepire	*ion	3
			g of evapotranapiration	3
			Water belence method	•
			The energy belance method	5
			Aerodynamic method	6
			Ampirical fermulae	7
			2.1.1.4.1 Ferman formula	8
			2.1.1.4.2 Baglomen formula	_
	•			9
			2.1.1.4.3 Maney & Criddle formula	10
			2.1.1.4.4 Thornthweit formula	ш
		2.1.2 Brepetre	repiration of different crops	12
			Sugar beet (beta vulgaria L.)	
			Onion (Allium Cone L.)	. 14
			Field beens (Viala Isha L.)	
			A Harmon Company	15
	2.2	Influence of w	ater on yield	1.7
	•	2.2.1 Sugar be	et	18
		2.2.3 Paten		19
	i	2.2.3 Field be	ens	20
:	2.3	Satar economy		a

			70.00
3.	No to	rials and Methods	23
4.	Resu	lte and Discussion	39
	4.1	becausing evapotranspiration	39
	4.2	Influence on yield	71
		4.2.1 Sugar beet	71
		4.2.2 Onion	76
		4.2.3 Field beans	80
	4-3	The water economy	85
5.	Sun	mary and Conclusions	98
٤	Dafe	A Tanoà a	94

LIE OF TAXABL

Sable	Title	Page
1	Chemical properties of the investigated soils	25
2	Physical properties of the investigated soils	25
3	Meterological data at Behtim during the growing season of sugar beet, onion and field beans	30
•	Adjusted pen evaporation data (B_A) using Reglement equation during the growth season of sugar beet at Babtim Experimental Station	- I
5	Adjusted pen evaporation data $(B_{\underline{A}})$ using Bagleman equation during the growth season of onion at Bahtim Experimental Station	- 32
6	Adjusted per evaporation data (B_A) using Eagleman equation during the growth season of field beans at Bahtim Experimental Station	33
7	Calculation of consumptive use factor "f" using Maney & Criddle equation during the growth season of sugar best at Bahtim Experi- mental Station	36
8	Calculation of consumptive use factor "f" using Blancy & Griddle equation during the growth season of onion at Babbin Emperimental Station	3 7
9	Calculation of consumptive use factor "f" using Rancy & Griddle equation during the growth seemon of field beens at Bahtin En-	
	perimental Section	30

able	<u>ritle</u>	Page
10	Average monthly evapotranspiration rate	
	(mm/day) for sugar beet cultivated in calca-	
	reous sandy loam, and clay soils	44
11	Average aonthly evapotranspiration rate	
	(mm/day) for onion cultivated in calcareous	
	mandy loam, clay and sand soils	45
12	Average monthly evapotranspiration rate (mm/	
	day) for field beans cultivated in calcareous	
	sandy loam, clay and sand soils	46
13	Monthly and seasonal evapotranspiration (cm)	
	of sugar beet cultivated in calcareous sandy	
	loam, and clay soils	48
14	Monthly and seasonal evapotranspiration (om)	
	of onion cultivated in calcareous sandy loam,	
	clay and sand soils	50
15	Monthly and seasonal evapotranspiration (cm)	
	of field beans cultivated in calcareous sandy	
	loam, clay and sand soils	52
16	Values of "c" factor for each month of the	
	growth season for sugar best cultivated in	
	calcareous sandy losm and clay soils	62
17	Values of "k" coefficient for each month of	
	the growth meason for sugar beet cultivated	
	in calcareous sandy loss, and clay soils	63

1	١	Ð.	U	Ì
	_			_

21110

- 2069
- 18 Values of "o" factor for each menth of the growth season for onion oultivated in calcareous sandy loam, clay and sand soils
- 19 Values of "k" coefficient for each month of the growth season for onion cultivated in calcarecus sandy loam, clay and mand soils
- 20 Values of "c" factor for each month of the growth season for field beans cultivated in ealcareous sandy loam, clay and sand seils
- 21 Values of "k" coefficient for each worth of the growth season for field beams cultivated in calcareous sandy loss, clay and sand soils
- 22 The average seasonal values of "C" factor and "K" coefficient for sugar beet, onion and field beans cultivated in calcareous sandy loam, clay and mand sails
- 23 Yield characteristics of sugar best cultivated in calcarcous sandy less and clay sails as affected by varying available soil moisture depleting level in the root some
- 24 Yield characteristics of onion cultivated in calcaroom mandy lumn, clay and sand stills on affection by varying symilable sail shings the past man.

reple	Title	Pace
25	Yield characteristics of field beans culti-	
	wated in calcareous sandy leam, elay and	
	sand soils as affected by varying available	
	soil moisture depletion in the root some	81
36	Water economy for the preduction of sugar	
	beet cultivated in calcareous sandy lean and	
	clay soils as affected by varying svailable	
	seil moisture depletion in the root some	96
27	Water economy for the production of enion	
	cultivated in calcareous sandy leam, clay	
	and sand soils as affected by varying available	
	soil moisture depletion level in the root some	88
26	Water economy for the production of field	
	bears cultivated in calcarsous sandy loam,	
	clay and sand soils as affected by varying	
	available soil moisture depletion in the	
	rook sone	90

LIST OF PISTERS

Pigure 10.		<u>Ince</u>
1	Evapotranspiration rate throughout the growth	
	season of sugar boot cultivated in calcareous	
	sandy leam and clay soils under different	
	levels of available soil meisture deplotion	
	in the root sems	40
2	Evapotuenspiration rate throughout the growth	
	season of emion cultivated in calcareous condy	
	loom, elay and sand soils under different	
	levels of available soil meisture depletion	
	in the root upon	41
3	Evapotranspiration rate throughout the growth	
	season of field beans cultivated in calcareous	
	sandy loom, clay and soul under different	
	levels of available soil moisture depletion	
	in the root sene	42
4	The relationship between average menthly air	
	temperature, arrange height of please and	
	average mentaly evapetranspiration for sugar	
	book	49
5	the relationship between average nouthly air	
	temperature, average haight of plants and	·
	average modily evapoliteapiration for onion	531

Pig.	to. Title	Page	
6	The relationship between average monthly		
	air temperature, average height of plants		
	and average monthly evapotranspiration for		
	field beans	53	
7	Average height and number of leaves through-		
	out the growth season of sugar beet plants		
	cultivated in calcareous sandy loam and		
	clay soils under different available soil		
	moisture depletion levels in the root some	57	
8	Average height and number of leaves through-		
	out the gro th season of onion plants culti-		
	vated in calcareous sandy loam, clay and sand		
	soils under different available soil moisture		
	depletion levels in the root some	58	
9	Average height throughout the growth season		
	of field beans plants cultivated in calcareous	B	
	sandy loam, clay and sand soils under differ-		
	ent available soil moisture depletion levels		
	in the root zone	59	
10	Adjusted pan evaporation (EA) (Eagleman),		
	consumptive use factor (f) (Blaney & Criddle)		
	and (Eo) class (A) pan evaporation	61	

ic. No	. Title	Page
11	Fresh of roots, sucrose concentration (per	
	cent) and sucrose content (grea per plant)	
	for sugar beet cultivated in calcareous sandy	
	loam and clay soils as affected by different	
	available soil moisture depletion levels in	
	the root some	74
12	Fresh weight of bulbs and total soluble solids	
	(T.S.S.) for onion cultivated in calcareous	
	sandy loam, clay and sand soils as affected	
	by different available soil moisture deple-	
	tion levels in the root zone	78
13	Weight of seeds and crude protein content	
	for field beans cultivated in celcareous sendy	
	loam, clay and sand soils as affected by dif-	
	ferent available soil moisture depletion levels	ı
	in the root some	82

I DEFENDING TOR

In all countries, all over the world, water is considered a limiting factor in agricultural expansion. The various phases of water consumption, are direct use by human beings, animals, industry and irrigation. As population increases, greater competition among the various phases makes conservation of water imperative.

Agriculture is, by no means, the major competitor for water consumption. Adding too much or too little water may cause a serious damage for crops. Consequently, water requirements must be carefully determined.

In order to scheive this goal, the evapotrenspiration (consumptive use of water) for each crop growing in various soil types under different climatological conditions, must be calculated so as to evaluate the water regimes. This could be aided by the determination of the periodical evapotranspiration rates for each crop and define the most critical periods in which a crop either requires maximum or minimum amounts of water.

Measuring or calculating evapotranspiration rate could be achieved by many ways such as soil moisture depletion method and using the meteorological data throughout the growth season. The later method leads

to evaluate an imperioal constant, for specific vegetation grown in particular location, which can be used afterwards as an index for direct calculation of evapotranspiration.

In the current study, three of most important crops grown in Mgypt were chosen; namely sugar beet, onion and field beans. They were cultivated in three different soil types; calcareous sandy losm, clay and sand soils under different levels of soil moisture depletion in the root some, to evaluate their interrelations on the evapotranspiration rate and the values of the imparical constants for both Magleman and Blaney and Criddle formulae.

Since agricultural development abould be based on irrigation economy, water economy (efficiency of water utilization) was calculated for every crop and some of its components in order to evaluate the most economic one.