STUDY OF MORBIDITY PATTERN IN CHILDREN WITH TRANSFUSION DEPENDENT THALASSEMIA

Thesis

Submitted for Partial Fulfillment of M.Sc

Degree

in Pediatrics

By

Heba Tallah Ahmed Ali Elawa

M.B., B. Ch.

Faculty of Medicine -Ain Shams University

Under supervision of **Prof. Galila Mohamed Mokhtar**

Professor of Pediatrics
Faculty of Medicine –Ain Shams University

Prof. Mohsen Gadallah

Professor of Public Health and Community Faculty of Medicine – Ain Shams University

Dr. Nayera Hazaa Khalil El Sherif

Lecturer of Pediatrics
Fauclty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2011

در اسة معدل الأصابة بالمضاعفات في الأطفال

المصابين بمرض انيميا البحر المتوسط

رسالة

توطئة للحصول على درجة الماجستير في طب الأطفال

مقدمة من الطبيبة / هبه الله أحمد على عليوة بكالوريوس الطب والجراحة كلية الطب جامعة عين شمس تحت أشر اف

الأستاذ الدكتور/ جليلة محمد مختار

أستاذ طب الأطفال كلية الطب – جامعة عين شمس

الأستاذ الدكتور/ محسن جاد الله

استاذ الصحة العامة والمجتمع كلية الطب – جامعة عين شمس

الدكتورة / نيرة هزاع خليل الشريف

مدرس طب الأطفال كلية الطب – جامعة عين شمس

كلية الطب - جامعة عين شمس ٢٠١١

SUMMARY

Beta-thalassaemia represents a group of recessively inherited haemoglobin disorders characterized by deficient synthesis of the b globin chain. The homozygous state results in severe anaemia in infancy which requires regular blood transfusion.

The most important forms of thalassemia result from autosomal mutant genes that reduce the rate of synthesis of α and β chains of Hb A, designated α and β thalassemia respectively.

In Egypt, β -thalassemia is the commonest form of chronic hemolytic anemia among Egyptian children.

Thalassaemia is the most common monogenic disorder in the world. it is present in all ethnic groups. Therefore it is estimated that each year more than 5000 children are born with transfusion dependent thalassaemia. In the last decade the average lifespan of these patients was not more than 10 years. The combination of blood transfusion and chelation therapy has dramatically prolonged the life expectancy of these patients, thus transforming thalassaemia from a rapidly fatal disease of childhood to a chronic disease compatible with a prolonged life.

Acknowledgment

First of all, I would like to thank "Allah" who granted me the strength to accomplish this work.

Words fail to express my deepest gratitude and appreciation to Prof. Galila Mohamed Mokhtar, Professor of Pediatrics, Faculty of Medicine, Ain Shams University for giving me the opportunity to work under his meticulous supervision and for his excellent guidance and powerful support.

My deepest thanks and appreciation go to Prof. Mohsen Gadallah, Professor of Public Health and Community, Faculty of Medicine – Ain Shams University, who honored me by her great supervision, valuable guidance and precious time.

I would like to express my true thanks to Dr. Nayera Hazaa Khalil El Sherif, Lecturer of Pediatrics, Fauclty of Medicine - Ain Shams University, for her great guidance and advices throughout this workand fruitful suggestions without which this work would have never been accomplished.

I am also very grateful to all pediatric hematology clinic staff for the facilities they offered in achieving the patients' medical records and for thier sincere cooperation.

My true love and warmest gratitude go Last but not by any means least, I would like to express my warm gratitude to my Mother, father Husband, my lovely child and to all my family, who were, and still always be, by my side and without whom I would have never been able to accomplish this work. Last but not least, I wouldlike to express my gratitude to my patients and their families and to every person who helped me while performing this work.

Heba Ahmed

List of Contents

Title	Page No.
Introduction	1
Aim of the Work	3
Review of Literature	
■ Beta-Thalassemia	4
 Morbidity and Mortality in Thalassemia Major 	49
Patients and Methods	109
Results	125
Discussion	169
Summary	213
Conclusion	218
Recommendations	219
References	222
Arahic summary	

List of Tables

Table No.	Title Page No.	
Table (1):	Demographic and clinical data of the studied patients	125
Table (2):	Mean Serum Ferritin Level in the year prior evaluation of the studied patients	126
Table (3):	Cardiovascular morbidities among beta Thalassemia patients	127
Table (4):	Renal morbidities among B thalassemia patients	128
Table (5):	Hepatic morbidities among B thalassemia patients	129
Table (6):	Bone mineral densityabnormalities among B thalassemia patient	130
Table (7):	Endocrinal morbidities among B thalassemia patients:	131
Table (8):	Iron chelation therapy given to the studied patients over the last 10 years	132
Table (9):	Comparison between the Different Iron Chelationtherapy groups (ICT) as regard the compliance.	133
Table (10):	Side effects of deferiprone among the studied patients	134
Table (11):	Side effects of ICL670 among the studied patients	135
Table (12):	Side effects of desferal among the studied patients	136
Table (13):	Comparison between both groups as regard Demographic and clinical Data	137

List of Tables (cont...)

Table No.	Title	Pa	age No.	
Table (14):	Comparison regard the Fre	equency of B		sion
Table (15):	Comparison regard anthro Puberty	opometric m	easurements	and
Table (16):	Comparison regard the endocrinal momentum mineral densitions	cardiac, orbidities an	hepatic, red d decreased b	nal, one
Table (17):	Comparison regard Iron Clast 2 years	helation the	erapy used in	the
Table (18):	Comparison be Iron Chelatio years	n therapy us	sed in the last	t 10
Table (19):	Comparison regard (Chelationther	Compliance	~ -	ron
Table (20):	Comparison regard the pr Related Adve	revelance of	Chelating Age	ent-
Table (21):	Comparison be the Mortality			
Table (22):	Comparison b			
Table (23):	Comparison b Blood Transfu		groups as reg lenectomy	
Table (24):	Comparison b		groups as reg	

List of Tables (cont...)

Title Page No.	
Comparison between ICT groups as regard the Serum Ferritin.	. 150
Comparison between ICT groups as regardthe prevalence of cardiac, hepatic, renal, endocrinal morbidities and decreased bone mineral density.	. 151
Correlation between the mean ferritin in the year before evaluation and renal, hepatic, bone density abnormalities	. 152
Correlation between betweenthe mean ferritin in the year before evaluation and endocrinal morbidities	. 153
Correlation between the mean ferritn in the year before evaluation and the cardiovascular complications	. 154
Correlation between morbidities and age of onset of the disease among the studied patients	. 155
Correlation between morbidities and gender among the studied patients	. 156
Correlation between ferrtin trend and compliance	. 157
Correlation between the meanferritn in the year before evaluation and and mortality rate.	. 158
Correlation between age, age at diagnosis, gender and mortality rate.	. 159
Correlation between compliance and mortality rate among the studied patients	. 160
	Comparison between ICT groups as regard the Serum Ferritin

List of Tables (cont...)

Table No.	Title Page No.	
Table (36):	Correlation between the compliance to chelatortherapy in the year before evaluation and renal, hepatic, bone density abnormalities	1
Table (37):	Correlation between the compliance to chelatortherapy in the year before evaluation and endocrinal abnormalities16	2
Table (38):	Correlation between the compliance to chelator therapy the year before evaluation and the cardiovascular complications	3
Table (39):	Correlation between the frequency of blood transfusion in the year before evaluation and renal, hepatic, bone density abnormalities	4
Table (40):	Correlation between the frequency of blood transfusion in the year before evaluation and endocrinal abnormalities	5
Table (41):	Correlation between thefrequency of blood transfusion in the year before evaluation and the cardiovascular complications	6
Table (42):	The correlation between the compliance and different types of chelatorsin the year before evaluation:	7

List of Figures

Fig. No.	Title Page No.
Fig. (1):	The geographical distribution of the thalassemias and the more common, inherited structural hemoglobin abnormalities
Fig. (2):	Structure of hemoglobin6
Fig. (3):	a. The facial appearance of a child with □-thalassemia major. b. The skull X-ray in □-thalassemia major
Fig. (4):	Management of thalassemia and related complications
Fig. (5):	Smear of normal RBC on the left and β thalassemia intermedia RBC on the right
Fig. (6):	The classic "hair on end" appearance on plain skull radiographs of a 9-year-old girl with thalassemia intermedia showing the Cranium (Extensive macrocephally with widened diploe, thinned tabula externa and subperiosteal spicule)
Fig. (7):	Excessive iron in a bone marrow preparation 23
Fig. (8):	Cardiovascular morbidities among beta Thalassemia patients
Fig. (9):	Renal morbidities among B thalassemia patients
Fig. (10):	Morbidities among the studied patients 131
Fig. (11):	Iron chelation therapy given to the studied patients in the last 10 years
Fig. (12):	Survival ratesamong the studied patients 168

List of Abbreviations

γ Gamma

α Alpha

β Beta

ζ Zeta

ε Epsilon

Hb Hemoglobin

IV Intravenous

SC Subcutaneous

TLC Total leucocytic count

Plt Platelet

T. bil Total bilirubin

D. bil Direct bilirubin

EF Ejection fraction

SD Standard deviation

LVEF Left ventricular ejection fraction

DFO Defereprone

RDW Red cell distribution width

rHuEPO Recombinant human erythropoietin

CPT Carnitinepalmitoyltransferase

OCTF Organic carnitine transporter family

IGF-1 Insulin growth factor 1

INTRODUCTION

halassemia is a group of chronic hereditary hemolytic particularly common in persons anemias Mediterranean, African, and South Asian ancestry in which there is decreased synthesis of one or more hemoglobin polypeptide chains (Palma et al., 2005).

Generally, the estimated prevalence is 16% in people from Cyprus, 3-14% in Thailand and 3-8% in populations from Bangladesh, China, India, Malaysia and Pakistan. A very low prevalences has been reported from people in Africa (0.9%) with those in North Africa having the highest prevalence and northern Europe 0.4% (Wambuas et al., 2006).

Depending on the genes involved, thalassemia is classified as Alpha-Thalassemia or B Thalassemia which is further classified into В thalassemia major and Thalassemia intermedia. Thalassemia major presents typically within the first year of life and patients subsequently require ongoing transfusions to survive. Thalassemia intermedia presents late in life and patients may be transfusion independent or require only sporadic transfusion (Forget et al., 2005).

Quality and duration of life of transfusion-dependent B Thalassemia patients have been transformed over the last ten years with life expectancy increasing well into the third and the forth decades. Nevertheless, the life prolongation

discloses several complications partly due to the underling disorders, partly related to the conventional treatment with blood transfusions and to iron overload (Borgna et al., *2003*).

Complications of thalassemia major are mostly due to iron overload caused by frequent blood transfusions, and include heart failure, infections, hypogonadism, infertility, diabetes mellitus and hypothyrodism (*Olivieri*, 1999).

Cardiac complications remain the most important in determining the survival of B -Thalassemia major patients, it should be emphasized that they are not restricted to the effect of anemia and iron loading although they are by far the most important factors (Piga and Longo, 1997).

Thalassemia patients have an increased risk of infections because of splenectomy, iron load and blood born infections particularly viral (Adam, 1998).

Endocrine abnormalities are among the common complications of thalassemia despite good chelation therapy. Delayed puberty and defective function of the hypothalamic /pituitary axis occurs in approximately 56% of both male and female patients (Cohen, 2000).

Osteoporosis is a multi-factorial complication and is very common in adult thalassemia patients of both sexes,it require an adequate management in order to prevent progressive disease and fractures (Locatelle, 2004).

AIM OF THE WORK

The aim of this work is to study the morbidity patterns of transfusion-dependent thalassemia patients, and compare the outcomes of these patients in relation to age of onset, type, duration and compliance to iron chelation therapy and frequency of blood transfusion.