ENERGY METABOLISM IN THE Duck

By KARIMA S. A. O. MOHAMED

THESIS

SUBMITTED TO THE FACULTY OF AGRICULTURE

AIN SUA

IN

PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF (Ph. D.)

(Poultry Nutrition)

Animal Production Department

Faculty of Agriculture

AIN SHAMS UNIVERSITY

1984

APPROVAL SHEET

Title of Thesis:

Energy metabolism in the mick

Name:

Karima Sayed Ahmed Osman MOHAMED

Thesis Approved by :

1) C. Chual...

2) t. E. Midelen an.

5) M.R. El Abbady

Date 29/5 /1984

CONTENTS

		Page
I INTR	RODUCTION	1
II REVI	EW OF LITERATURE	3
A) E	Evaluation of Classical Metabolizable	
E	Energy	3
B) R	Rapid Bioassay For Measuring Metabolizable	
E	Energy	9
Q) N	itrogen Correction Of Metabolizable Energy.	11
р) Е	Indogenous Energy Losses	13
E) 0	Carcass Composition and Characteristics	1 6
III MAT	PERIALS AND METHODS	18
A) F	PART I : Studies On Pekin Duck	20
	l- Materials	21
	a- experimental birds	21
	b- experimental rations	22
	2- Methods	25
	a- experimental procedures	25
	b- energy measurements	26
	c- chemical analysis	27
	d- statistical analysis	27
в) РА	ARI II : Studies On Muscovy Duck	28
	1- Materials	29
	a- experimental birds	29
	b- experimental rations	31

	Page
2- Methods	35
a-experimental procedures	3 5
b-energy measurements	3 8
c-protein digestibility	42
d- statistical analysis	43
IV RESULTS	44
PART I	444
A) Determining of Metacolizable Energy By	
B) Classical Methods For Pekin Duck	44
Difterent Levels of Metabolizable	
Energy For Pekin Duck	46
1- Duck performance	46
a- live weight gain	48
b- average daily gain	48
c- feed consumption	50
d- efficiency of feed utilization.	54
e- energy consumption	r _y e,
f- efficiency of energy utilization.	:
2- Meat composition and carcass charact-	
erístics	58
a- meat composition	58
b- carcass characteristics	60

FART II :	50
A) Measuring Of Quantity Of Excreta output	oj:
B) Endogenous Energy Losses	65
C) Determination of Metabolizable	
Energy Values In Both Muscovy Ducks	
and Chickens	79
1. Basal diet	79
2. Basal diet supplemented with	
different ingredients	೮1
a- basal diet supplemented with	
corn	81
b- basal diet supplemented with wheat.	84
c-basal diet supplemented with barley.	87
d-basal diet supplemented with	
soybean meal	90
e- basal diet supplement with cotton	
seed meal	-3
f- basal diet supplemented with	
alfalfa meal	-,16
D) High Fibre Diet Digestibility In Both	
Muscovy Ducks and Chickens	10]
V DISCUSSION	104
A)Determining of Classical Metabolizable	
Energy For Pekin Duck	104

	Page
B) Different Levels of Metabolizable	
Energy For Pekin Duck	104
	
C) Quantity of Excreta Output For	
Both Muscovy Duck AND Chicken	106
D) Endogenous Energy Losses	106
E) Determination of Metabolizable	
Energy Values For Both Muscovy Duck	
AND Chicken	108
F) High Fibre Diet Digestibility In	
Both Muscovy Duck AND Chicken	110
VI SUMMARY AND CONCLUSION	113
VII ACNOWLEDGEMENT	116
VII REFERENCES	117
IX APPENDIX	137
X ARABIC SUMMARY.	

INTRODUCTION

INTRODUCTION

In common practice the formulation of duck rations is usually done using the calorie protein ratio maintained between total protein and kcalories of metabolizable energy of the ingredients used.

Unfortunately, however, the metabolizable energy values used for such ingredients are measured with chicks as experimental animals.

The tendency of ducks to deposit fat in their carcasses is widely observed and aside of genetical factors this could be achieved by better energy utilization of the energy content of the rations fed.

Tackling such problem should include the probability that the metabolizable energy values obtained with chicks are rather high for ducks and that such values should be redetermined using the duck as the experimental animal.

In order to investigate the differences between ducks and chicks as energy consumers, simultaneous comparison was made between the ME values obtained for some feed-stuffs with two species.

The present study was therefore undertaken 50 :-

I measure directly with Fekin ducks the classical menabolizable energy (ME) of some ingredients namely: corn, wheat, barley, cotton seed meal, field beans, wheat bran and fish meal.

II Formulate practical rations for Pekin ducks with the new Mr. values.

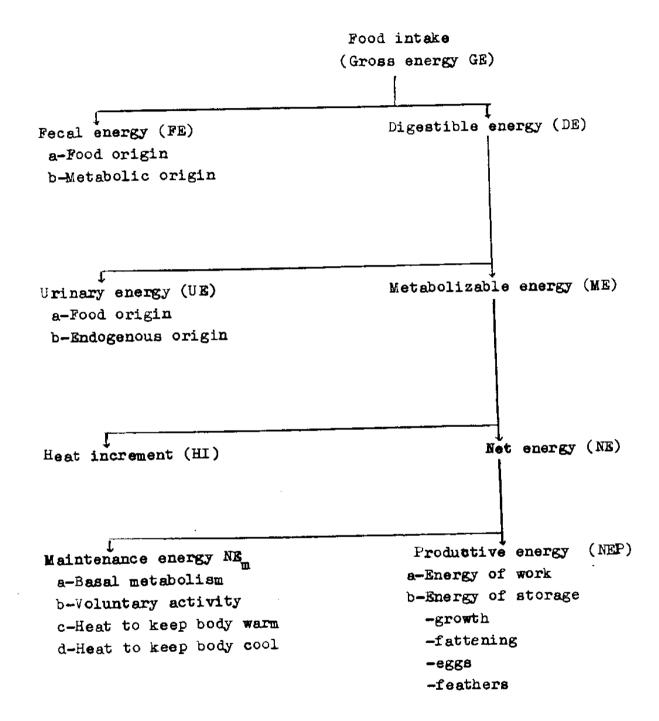
of ducks (Muscovy). This investigation included quantity of excreta, energy losses, apparent Ma and true ma. The ability of chicks (broiler) and ducks (muscovy) to metabolize high fibre diets was also measured.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

A- Evaluation of Classical Metabolizable Energy

Many authors have reviewed the subject of energy concepts for poultry nutrition (Titus, 1961; Lockhart et al., 1963 a; Vohra, 1966; Kurnick, 1967 and Kohler & Kuzmicky, 1970). Currently, metabolizable energy values (ME) are popular for the use in computing the least cost diet formulations (Vohra, 1972).


No doubt, ME is easier to determine and more practical than net energy or Frap's (1944) productive energy. The partition of gross energy (GE) into its various pathways is given in Fig. 1. By its very concept, ME is the energy available for anabolism (the building of body substance, egg) and for catabolism (the heat production of animals) Kleiber, (1961) Thus:-

$$ME = GE_i - GE_{ex}$$

where GE; = gross energy of the dietary intake

GE = gross energy of the equivalent excreta.

Fig.1: The partition of gross energy of foods

If the ME values is corrected for nitrogen balance, then it should be termed as ME_n (NRC, 1966). The term nitrogen balance (NB) is measured by subtracting the nitrogen in excreta (N_{ex}) from nitrogen in feed intake (N_i).

$$ME_{n} = ME - NB$$

$$= GE_{i} - GE_{ex} - (N_{i} - N_{ex})$$

Metabolizable energy is affected by several factors such as experimental animals, diets, environment or to the methods used. (Sibbald et al 1960; Renner 4 Hill 1961; and Häkansson, 1974). Besides, all the factors affecting the digestibility of principle nutrient of diet may, indirectly, influence ME (Baldini, 1961).

Sibbald et al (1960) demonstrated that the ME value of a foodstuff increases as the chick becomes older. Accordingly hens showed higher ME values than chicks for autoclaved extracted soyabean flakes (Hill & Renner, 1963), for rapeseed meal and soya bean meal (Sell,1966; Lodhi et al, 1969and Rao & Clandinin, 1970), for corn, barley hulls, wheat bran, dehydrated alfalfa meal and saflower meal (Peterson et al., 1973); and for corn gluten feed (Hochstetler & Scott, 1975).

However, there are still unsolved problems
associated with ME determination concerning differences
sometimes detected between species (Slinger et al.,
1964; Fisher & Shanon, 1973; Lesson et al.,
1974 and Sugden, 1974), between strains (Sibbald &
Slinger, 1963 b; Slinger et al., 1964; Bayley
et al., 1968; Foster, 1968 a; Proudman et al.,
1970 and March & Biely, 1971) and between
experimental animals of different ages (Renner &
Hill, 1960; Lockhart et al., 1963 a,b; Zelenka
1968; Lodhi et al., 1970 and Rao & Clandinin,
1970).

Sibbald and Slinger (1963 b), stated that ME values of feeds were higher for White Leghorn chicks than for White Rock chicks, and the same authors (1963 b) showed that the ME values obtained with turkey for a diet of low energy content were higher than those obtained with the chicks, while the inverse was true for a diet of high energy content. Bayley, et al., (1968) extended these findings and showed that the ME value of raw wheat germ meal with adult large white male turkey was higher than that obtained with chicks or adult cockerels. These authors also showed that these differences did not occur