7.7.7

GENETIC STUDIES ON TYPE TRAITS IN HOLSTEIN COWS

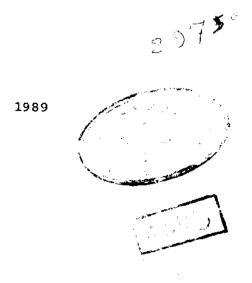
Ву

Manal Mohammad Ahmad Sayed

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in


Agriculture
(Animal Breeding)

11.11

Department of Animal Production

Faculty of Agriculture

Ain Shams University

Approval Sheet

GENETIC STUDIES ON TYPE TRAITS IN HOLSTEIN COWS

Ву

Manal Mohammad Ahmmad Sayed

B. Sc. of Agric. Sci. (Animal Production) 1985

GENETIC STUDIES ON TYPE TRAITS IN HOLSTEIN COWS

By

Manal Mohammad Ahmmad Sayed

B. Sc. of Agric. Sci. (Animal Production) 1985

ABSTRACT

Data on linear type scores for 20 traits were evaluated by Holstein Association from January 1983 to December 1985. Data for analysis were 7090 records by 214 sires, each had on the average 33 progeney in 2705 herds. Data were deviated from herd-year-month and analyzed by mixed model containing sire, stage of lactation and age at measuring. Heritabilities, phenotypic and genetic correlations were estimated and used in a method of the multivariate analysis called the factor analysis in trying to reduce the number of the 20 type traits. The gain from direct and indirect selection was also estimated.

ACKNOWLEDGEMENTS

First and foremost, all praises are due to Allah, who blessed me with good advisors and friends.

Special thanks are to my mother, who teaches me the worth of science, my father who gives encouragement and in whose eyes I can read my success and to my brothers and sisters who provide me with confidence, encouragement, support and patience at time needed.

A special word of thankfulness is due to my advisor, Dr.

E. Salah E. Galal, Professor of Animal Breeding, Ain Shams
University for his constructive criticism and his eveready
readiness to help in overcoming problems during the analysis
and writing this thesis. I am eternally grateful and wish to
express my sincere appreciation for his guidance and his
efforts to extend my understanding of my scientific career.

I owe Dr. Hussein Mansour, Associate Professor of Animal Breeding, of Agriculture, Ain Shams University, a great deal. Through his sincere efforts it has been possible to obtain the data used in this study Dr. Mansour proposed the topic and the work plan and guided the study. Through his endless ability to give and his patience and the friendly atmosphere he secures for his students I learned a lot.

I wish to thank the Holstein Association under the directorship of Dr. L. Johnson for making the data available for this study.

I am most grateful to Dr. Abdel-Halim A. Ashmawy, Associate Professor of Animal Breeding, Ain Shams University for his help, support and for his guidance as a member of the advisory committee.

I wish to thank the advice of Dr. Mohammad H. Sadek, Associate Professor of Animal Breeding, Ain Shams University for reading part of the thesis.

I also would like to thank the help of my colleagues especially, Mr. Hazem Almahdy for his help at the earlier stages of this thesis.

This thesis would have never been accomplished without the kindly help of the team of the Scientific Computer Unit at the Faculty of Agriculture, Ain Shams University, Miss Nafissa Abdel-Karim, Miss Manal Mohammad, Mr. Mohammad Alaa Eldin Sobhy, Miss Reda Elsayed and Miss Riham Atef have all greatly helped during the preparation of this thesis.

Dedication

This thesis is dedicated to who has provided me with the stimulating environment to extend and broaden my understanding of life, taught me the value and meaning of the word and is my example in life.

To my friend my brother Hamdy Elsayed

This work is dedicated to him.

TABLE OF CONTENTS

Page
INTRODUCTION1
REVIEW OF LITERATURE2
Sire2
Genetic Parameters2
Heritability2
Genetic and phenotypic correlations8
Non Genetic Factors30
Multivariate Analysis31
MATERIALS AND METHODS36
Statistical Analysis36
Estimation of genetic parameters40
Heritability40
Genetic And phenotypic correlations40
Multivariate Analysis41
The orthogonal factor model42
Eigen value-eigen vector46
Factor rotation47
Reducing the number of the type traits49
RESULTS AND DISCUSSION51
Sire51
Genetic Parameters51
Heritability51
Genetic and phenotypic correlation60
Correlations with final score62

	Page
Non Genetic Factors	.62
Multivariate Analysis	.64
Factoring Phenotypic Correlation Matrix	.64
Factoring The Genetic Correlation Matrix	.68
Results of The New Five Traits (PFS $_i$)	.72
SUMMARY	.75
REFERENCES	.77
APPENDIX	.83
ARABIC SUMMARY	•

LIST OF TABLES

Table	Pag	je
1.	Heritability estimates (h^2) and their	
	standard errors (SE) of different type	
	traits for dairy breeds	3
2.	Estimates of genetic (r_G) and phenotypic	
	(rp) correlations between different type	
	traits for dairy breeds	11
3.	Factor pattern coefficients for eight	
	phenotypic and seven genetic factors	35
4.	Description of type traits	38
5.	Sire and error components of studied type	
	traits	51
6.	Heritabilities (on the diagonal) of the	
	studied type traits and genetic (above	
	diagonal) and phenotypic (below diagonal)	
	correlations between them	58
7.	Standard errors (±SE) of heritability	
	estimates (on the diagonal) and of the	
	genetic correlations between type traits	59
8.	Results of analysis of variance of type	
	traits	63
9.	Phenotypic eigen values and proportion of	
	total variance explained by factor principal	
	component	64

		Page
10.	Factor pattern coefficients for the rotated	
	phenotypic factors	65
11.	Description of factors for cows with largest	
	phenotypic factor values	67
12.	Genetic eigen values and proportion of total	
	variance explained by factor principal	
	components	69
13.	Factor pattern coefficients for the rotated	
	genetic factors	70
14.	Description of factors for cows with largest	
	genetic factor values	71
15.	Heritability estimates and their standard	
	errors (±SE) of the new five traits (PFS;)	
	and the genetic correlations between the new	
	traits and the type traits and the corres-	
	ponding standard errors	73
16.	Ratio between correlated response in type	
	traits when selecting for ${ t PFS}_{\dot{1}}$ to direct	
	response $(r_G h_X/h_Y)$ for traits with r_G	
	h _X /h _V >1	74

LIST OF FIGURES

																			1	? a	g	E
Figure	1					 	 				 						 				3.	7

LIST OF ABBREVIATIONS

na. not available

BFCS British friesian cattle society

MMB Milk marketing board

STA STATURE

STR STRENGTH

BOD BODY DEPTH

ANG ANGULARITY

RAN Rump angle

RL Rump length

RW Rump wedth

RLS Rear leg set

FAN Foot angle

FATT Fore attachment

RUH Rear udder heigh

RUW Rear udder width

US Udder suppo

UD Udder depth

TRV Teat rear view

GA General appearance

DCH Dairy character

BCA Body capacity

MS Mammary system

FS Final score

PPC₁ The first phenotypic principal

component

PF ₁	The first phenotypic factor
GPC ₁	The first principal component from
	the genetic correlation matrix
GF ₁	The first genetic factor
R ²	Coefficient of determination
c ²	Communality
Ŋŀ.	Specific eigen value
FSi	Specific factor score
•	-

INTRODUCTION

Type traits are body measurements to describe and analyze the cow's conformation, so that the breeder may compare his animals and herd with the breed as a whole. These traits have been used extensively to characterize dairy animals and in dairy judging techniques.

Type traits may indicate freedom from disease like udder traits (fore attachment, rear udder height, rear udder width, udder support, udder depth and teat rear view).

Type traits are important if closely related to lactation production or lifetime production and could be used to support selection for milk. These traits are many and it would be in the interest of the breeders to reduce these many traits into as few as possible without losing much information. Therefore, it is the objective of this study to estimate the heritabilities and genetic and phenotypic relationships between 20 type traits and to use the genetic and phenotypic relationships between them to investigate the possibility of reducing the 20 type traits to a lesser number while retaining most of the information contained in the 20 traits, i.e. reducing the number of traits by removing redundancy of information in the original set.