APPROVAL SHEET

Title : Protein frotification of some dairy produ-

cts.

Name : Atef El-Sayed Mohamed Fayed.

This Thesis for the Ph.D. Degree had been approved by:

Prof. Dr. El Glandan M.A.

Prof. Dr. G. A. Tawals

Prof. Dr.

Committee in Charge

Date 11/6/1986.

ACKNOWLEDGEMENT

This work was carried out within the frame of the Joint Supervision "Channels" System between Justus-Liebig University, Giessen, West Germany and the University of Ain Shams, Cairo, Egypt. The author would like to express his deep gratitute to Professor Dr. Edmund Renner, Head of the Institute of Dairy Science, Counter-part of Professor Dr. A.A. Hofi, Food Science Department, Ain Shams Agricultural College. The facilities offered by Professor Dr. E. Renner to conduct the practical part. in Giessen should be gratefully acknowledged.

I am also greatly indebted to Professor Dr. G.A. Mahran and Professor Dr. A.E.A. Hagrass of the same above Departement for their kind encouragement and well appreciated assistance during the writing process of this thesis. Again the worker is also truly thankful to Professor Dr. A.A. Hofi for the initiation of the Study, his regular visits & follow up of the work in Giessen and for revising the manuscript.

The writer is also grateful to all Staff Members and $P_{\mbox{e}}$ rsonnel of the Institute in Giessen for

their kind assistance during the fruitful period spent among them. Special thanks are also due to Dr. W. Buchheim of the Federal Dairy Research Institute, Kiel, for helping with the electron microscopic examinations.

The efficient attention of both the Egyptian Missions Directorate and the Cultural Counsellar Office in Bonn could not be ignored right through my stay in West Germany.

CONTENTS

		Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	5
	2.1. Ultilization of reconstituted skim- milk powder in Kariesh cheese manu-	
	facture and other white pickled cheeses	5
		,
	2.2. Properties of soft cheese as affec-	
	ted by the use of UF-technique	9
	2.2.1. The use of UF-technique in the manu- facture of soft cheeses from fresh	
	milk	9
	2.2.2. The use of UF-technique in the manu- facture of white pickled cheeses from dried milk	18
	2.3. Further advantages of UF-technique in	
	cheesemaking	23
	2.3.1. Economical advantages	23
	2.3.2. Sanitary advantages	24
	2.3.3. Nutritive aspects	24
3.	MATERIALS AND METHODS	27
	3.1. Materials	27
	3.1.1. Milks	27
	3.1.2. Rennet and starter culture	2 7
	3.1.3. Materials preparation	27

	Page
3.1.3.1. Milk powder reconstitution	27
3.1.3.2. Preparation of starter culture and rennet	28
3.1.3.3. Retentates preparation	28
3.1.4. Manufacture of Kariesh cheese	28
3.1.4.1. Traditional procedure (T-cheese)	28
3.1.4.2. Ultrafiltration-cheese product- ion (UF-cheese)	29
3.1.4.3. Cheese storage and sampling	30
3.2. Methods of analysis	32
3.2.1. Milk, retentate and permeate analyses	32
3.2.2. Cheese analyses	32
3.2.2.1. Determination of dry matter content	32
3.2.2.2. Estimation of lactose content	33
3.2.2.3. Determination of titratable acidity	33
3.2.2.4. The measurement of pH value	33
3.2.2.5. The ash content determination	33
3.2.2.6. The salt content determination .	33
3.2.2.7. Total nitrogen estimation	34
3.2.2.8. Determination of water soluble nitrogen (WSN)	34
3.2.2.9. Estimation of non protein nitrogen content (NPN)	34
3.2.2.10. The nitrogen distribution of fresh cheese	35
3.2.2.11. The fat content determination	35
3.2.2.12. Separation and quantitative determination of casein fractions by disc electrophoresis	

	Page
	26
3.2.2.13. Organoleptic properties	36
3.2.2.14. Statistical analysis	37
3.2.2.15. Electron microscopical examination	38
4. PART I:- COMPARISON BETWEEN THE ULTRAFILTRAT-	
ION AND TRADITIONAL TECHNIQUES USED	
IN KARIESH CHEESE PRODUCED FROM FRESH	[
OR DRIED SKIMMILK	39
4.1. Experimentals	39
4.2. Results and Discussion	40
4.2.1. The chemical composition of initial	
milk, retentate and permeate	40
4.2.2. The yield of cheese	44
4.2.2.1. Fresh cheese yield	44
4.2.2.2. The transfer rate of milk components into fresh cheese	46
4.2.2.3. The weight change of cheese during pickling	50
4.2.3. The dry matter content of cheese	55
4.2.4. Lactose content of cheese	60
4.2.5. The acidity and pH value of cheese	63
4.2.6. The ash, salt, and fat contents of cheese	68
4.2.7. The total nitrogen content of cheese.	69
4.2.8. Nitrogen distribution in fresh cheese	72
2.2.9. The ripening indices	74

	Page
4.2.9.1. The water soluble nitrogen 4.2.9.2. The NPN content	74 78
4.2.10. The changes of casein fractions in Kariesh cheese during pickling	82
4.2.11. Organoleptic quanlity of cheese	91
4.2.12. The industerial advantages of the application of the ultrafiltration technology, in the Kariesh cheese manufacture	98
ONSTITUTION RATIOS ON THE CHARACTERS OF RESULTANT UF-KARIESH CHEESE	104
5.1. Experimentals	104
5.2. Results and Discussion 5.2.1. The chemical composition of initial	106
milk, retentate and permeate	106
5.2.2. The cheese yield	110 110 113
5.2.3. Dry matter content of cheese	114
5.2.4. Lactose content of Kariesh cheese	116

ch.

•		Page
	5.2.5. The OSH and pH values	119
	5.2.6. The ash, salt and fat contents	123
	5.2.7. The total nitrogen content	124
	5.2.8. The nitrogen distribution of fresh cheese	126
	5.2.9. Ripening indices	126
	5.2.9.1. Water soluble nitrogen (WSN) and NPN contents	126
	5.2.9.2. The changes in casein fractions	131
	5.2.10. The organoleptic quality of the cheese	134
6.	SUMMARY AND CONCLUSION	138
7.	REFERENCES	147
	ARABIC SUMMARY	400

1. INTRODUCTION

Kariesh "skimmilk" cheese is one of the indigenous white soft cheese types in Egypt. On the farms it is made from "Rayeb" milk. The latter is a naturally developed acidity coagulant during gravity creaming in earthenware containers. After skimming the sour cream, the "Rayeb" milk is drained in folded mats. After drainage, salt is sprinkled on the curd. Resultant cheese is either consumed fresh or after pickling in available farm—neuse milk by—products, e.g. butter milk, "Murta", whey ... etc.

In the factories, where centrifugal separators are used, skimmilk results inferior Kariesh cheese type due to lower fat content in separator's skimmilk. The first investigation to improve the quality and manufacture process of this cheese was carried out by Fahmi (1950), who used acid-rennet method, which offered a good basis and simplified technique for speedy and satisfactory method for making Kariesh cheese. Besides, cheese possessed better flavour and quality. Other efforts were conducted to improve the Kariesh cheese quality by El-Sadek & Abd El-Motteleb (1958a; 1958b); Abou-Dawood & Abdou (1973); and Abdou & Dawood (1977) ... etc.

National milk supply has been rather limited during the last twenty five years. So far and as recorded by Abdel-Khalik (1981) the national milk yield covers only about 25% of the country demand. To cover the obvious shortage in liquid milk supply the use of milk powder was inevitable in Egyptian dairy

industry. So far, dried milk, whole or skim has been widely indroduced to most of the market dairy products e.g. liquid & fermented milks and soft & hard cheeses. In cheese making, some of the producers, who depend mainly on milk powder are of the opinion of playing about with the traditional reconstitution ratio 1:10, to avoid whey drainage and disposal problems.

Besides, lacking in milk supply, the country is also faced by a live stock problem, i.e. protein deficiency in human nutrition. Thus securing and saving milk proteins for any sort of mechanical loss during the manufacture process, is quite a necessity in dairy industry. It was thought of UF-technique as one of the main tools for the enrichment of dairy products with protein(Fenton-May et al.,1972; Chapman et al.,1974; Glover et al.,1978; and Hickey et al.,1983).

The term ultrafiltration has become increasingly familiar to the dairy industries. It is used successfully and commercially for manufacture of many soft cheese varieties. The technique is characterized by, higher cheese yield, full retention of protein in the product, shorter time of manufacture, less amounts of non-dairy materials needed e.g. rennet, starter and salt and shorter ripening time. Also increasing the industrial capacity and securing uniform products from day to day could not be also ignored. Whey pollution problems are also avoided, opposite to that sweet permeate could be used in several food and chemical industries (Delaney, 1981; Richter, 1983; and Halter & Puhan, 1984). In addition, the possibility

of closed full automation in cheesemaking could be achieved only by the UF-technique (Maubois, 1973; Hansen, 1974; Jepsen, 1975; Kosikowski, 1977; Guengerich, 1979; Horton, 1982; and Mann, 1982).

However, the investigation was conducted in two parts. The first part was concerned with throwing some light on the product manufactured by the UF-technique as well as the traditional procedure using fresh and dried cows' skimmilk. In the second part the effect of some skimmilk powder reconstitution ratios on the characters of resultant UF-Kariesh cheese was examined. Statistical analysis was applied on the data obtained in the two parts.

The data given in the present work on UF-Kariesh cheese and the resultants achieved on UF-Domiati cheese (El-Hofi, 1984), both may cover a comprehensive technical, chemical, physical and organoleptic background on the importance of indroducing the UF-technology to white soft cheese industry-from cows' milk - in Egypt. Needless to add that recent Dairy Farming Schemes in Egypt are based on cows' milk. It is badly hoped that these schemes will succeed in securing cleaner milk supplies other wise dependence on imported milk powder will continue to be inevitable, particularly if the UF-technique is to be adapted.

Finally, the facts and figures recorded in the two mentioned twin texts on UF-Kariesh and

UF-Domiati cheeses reveal numerous advantages for the UF-procedure, among which the following ones could be briefly recalted, uniform production from day to day, higher yields, shorter processing time, absence of loss in weight during storage or pickling, much less non-dairy ingredients needed ... etc and possibility of making use of UF-by product, actually permeate, in many other food and beverages industry.

2. REVIEW OF LITERATURE

2.1. <u>Utilization of reconstituted skimmilk powder</u> in Kariesh cheese manufacture and other white pickled cheeses:

Kariesh cheese is normally made from laban rayeb "gravity skimmed milk" or cetnrifuged skimmilk. However, several trials were carried out to produce Kariesh cheese either partially or completely from reconstituted skimmilk powder (R.S.M.).

Ghaleb (1975) tried to improve the quality of Kariesh cheese made from RSM by adding some flavouring compounds. The addition of diacetyl, amino acids mixture or combination of these flavouring compounds had little effect on the flavour of Kariesh cheese, while the use of citrate-fermenting starter improved the flavour. Moreover, the powder flavour was disappeared. Treating of the cheese milk with H202catalase resulted in a fresh cheese with a somewhat soft body, open texture and satisfactory flavour. The addition of potassium nitrate to the cheese milk resulted in higher scores than the control, however, the fresh cheese was characterized with a rather tought