ND

A STUDY ON THE CHEMICAL COMPOSITION AND

NUTRITIVE VALUE OF ANIMAL AND POULTRY

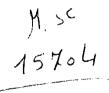
WASTES IN RATION FOR SHEEP

6:9 dx0850

В **У**

SOLIMAN MOHAMMED SOLIMAN ABD EL-MAWLA

B.Sc. Agric., Ain Shams University (1977)


THESIS

Submitted, In Partial Fulfilment of The Requirement for

The Degree of

MASTER OF SCIENCE (Animal Nutrition)

636.3 5.M.

Animal Production Department
Faculty of Agriculture
Ain Shams University

(1983)

APPROVAL SHEET

Title: A Study on the Chemical Composition and Nutritive Value of Animal and Poultry Wastes in Ration for Sheep.

Name :- Soliman Mohammed Soliman Abd El-Mawla.
B.Sc . Agric., June (1977).

This Thesis has been approved by:-

Prof. Dr. - F. F. Swide

Prof. Dr. L. S. Soliman

Committee in Charge

Date 5/6/1983.

ACK NO TELEGMENTS

The author wishes to express his sincere gratitude to Dr. Mohamed A. El Ashry, Prof. of Animal Mutrition, Animal Production Department, Faculty of Agriculture, University of Ain Shams, and the Principal investigator of the research Project "Mutritional potential for recycling of animal and poultry Wastes", for suggesting the problem, his close supervision, encouragment and continuous help.

My deepest thanks are also due to Dr. A.M. El-Serafy and Dr. H.M. Khattab, Associate Prof. of Animal Nutrition of the same Department for their continuous encoragment, criticism and help. (Both on complete delagation to OMAN and YEMEN ARAB REPUBLIC.

I am also grateful to Dr. H.S. Soliman associate Prof. of Animal Nutrition of the same Department and member of the research team of the "Nutritional Potential for recycling of animal and poultry wastes" project for his continuous help, encoragement, valuable discussions and reading the manuscript.

I would like to express my gratitude to the Egyptian-American University Linkage Program for their financial support throughout project No. 81006.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	2
1. Chemical Composition	2
a- Poultry manure	2
b- Broiler litter	6
c- Cattle manure	8
2. Protein Value for Ruminants	10
3. Energy Value for Ruminants	15
4. Nutritional Quality of Animal and poultry Manure as Affected by Storage Conditions and Physico-Chemical Treatments.	18
MATERIALS AND METHODS	22
- Objectives of the study	22
- Waste materials used	22
- Rations used (Formulation)	24
- Animals, digestibility trials and N-balance	30
- Rumen parameters	32
- Analatical procedures	32
RESULTS	34
Chemical Composition of the Different waste	
materials	2.4

Nutritive value of different waste	Page
sources for sheep.	30
Experiment I (HELWAN) layers droppings	36
- Feed and Water intakes	36
- Nutrients digestibility, nitrogen balance,	
Invitro dry and Organic matter disappear-	
ance and TDN values.	39
- Rumen liquor parameters	43
Experiment II (SAKHA) layers droppings	47
- Feed and Water intakes	47
- Nutrients digestibility, N-balance, IVDMD,	
IVOMD and TDN values	51
- Rumen liquor parameters	55
Experiment III (Broiler litter-Wheat straw	
base).	59
- Feed and Water intake	59
- Nutrients digestibility, N-balance, IVDMD,	
IVOMD and TDN values	62
- Rumen liquor parameters	66
Experimenta IV (Layers litter-Rice straw base)	70
- Feed and water intakes	7 0
- Nutrients digestibility, N-balance, IVDMD,	
IVOMD and TDN values	73
- Rumen liquor parameters	77

	Page
Experiment V (Buffalo Manure)	81
 Feed and water intakes Nutrients digestibility, N-balance, IVDMD. 	81
IVOMD and TDN values	84
- Rumen liquor parameters	88
GENERAL DISCUSSION	91
- Chemical composition of the different waste materials	91
- Food and Water Intakes	94
- In Vivo and In Vitro Nutrients digestibility, N-balance,	98
Rumen liquor parameters	102
SUMMARY	105
REFERENCES	108
ARABIC SUMMARY	

INTRODUCTION

Manure disposal problem is expected to get worse as a result of increased intensification of both poultry and animal production.

Such wastes contain many nutritional ingredients or compounds which can be utilized by ruminants. The major draw back restricting the use of such wastes in ruminant rations is the lack of uniformity in their chemical composition, possibly due to differences in rations offered, type of production and period of storage of the excreta. The present study was carried out to examine the possibility of using different poultry and animal wastes in rations for sheep.

REVIEW OF LITERATURE

Chemical Composition

a · Poultry Manure:

Artificially dried poultry manure has been shown to be a potential ingredient in compound feed for ruminants (De Bore and Steg, 1977).

Chemical composition (g/kg DM) of artificially dried Poultry manure is given in table (1).

Table(1) Chemical composition (g/kg DM) of artifficially dried poultry manure.

Item.	DM	Ash	C.P.	True P.	EE	Fi- ber	NFE
Value	938	233	315	184	36	146	270

The average composition of laying hen manure obtained from different sources is summarized in table (2). The data indicate that dehydrated manure usually contains less than 10% moisture which occasionally may reach the level of 18%. It also contain about 30% C.P(only 11% true protein) and 12% crude fiber (dry basis).

Dried poultry waste handicapped by its high ash content (28%), which lowers its energy value. However, it is extremely rich in calcium (8.8%) and phosphorus (2.5%).

jQuisenberry and Bradly; k Barigi-Bini, EEl-Sabban et al., dLong et al., fTinninit et al.,	i Pryor and conner,	IDN(Sheep)	Digestible energy (Sheen)	(Cattle)	Digestible anergy	Shergy gross	Tr.	Ether extract	Crude Fiber	Digestible protein	True protein	Crude protein	Dry Matter
<u></u>		%	Kcal/lg	Kcal/kg		Kcal/kg	53	39.	73	70	7 %	70.4	,°,
1968. 1969. 1969. 1969. 1972.	1964.	1	1911	1875 e	,	3533 +	28.7 +	2.0 +	12.7 _±	14.4 T	11.3 +	28.0 +	89·65 ±
h Lowman and K night, b Flegal and Zindel., a Poline et al., e Bull and Reid,	Zinc	Copper Manganese	ti71 Cobalt	Iron	S alt	234 ae Silica	2.8abcdg Chlorine	.5abcde Petassium		abed Garagnesium	1.4 aug rnospnorus	Þ	abodek 7.7
	m eg	19 EE 19 19 19 19 19 19 19 19	m <i>g</i> .	,,	~ °	%3	%3	23	2%	. 73			79
1970. 1970. 1971. 1971.	/kg	K 60	/kg	9.1	0,1								

Central Library - Ain Shams University

Effect of storage period on the chemical compositions of poultry manure:

literature on dehydrated poultry manure from cage layers often referred to as dehydrated poultry waste (DPW), show wide variation in its composition. The most common variation is in its crude protein content. An important cause of variation is duration of storage of the wet manure. Flegal et al., (1972), studied the effect of storage period on the crude protein content of poultry manure. They found that storage period of 3-weeks had no effect on crude protein content of the manure. Increasing the storage period from 4 to 14 weeks decreased the crude protein content of the manure from 30 to 18% (Table 3).

Table (3):- Effect of storage period length of fresh hen droppings on crude protein content of dried poultry waste (DPW).

by (Flegal et al., 1972).

Storage period (Days)	Percent of crude protein (Dry basis)
7	30 . 3
14	32.9
21	31.2
28	30.2
35	27.4
42	25.7
49	25.0
56	20.4
63	24.9
70	23.5
77	21.2
84	22.4
91	19.9
98	18.3

- 6 -

b Broiler litter:

The nutrient composition of broiler litter is shown in table (4). Many factors may contribute to the wide range of variation in the composition of broiler litter.

Under standard management systems the bedding used, such as corn cobs, peanut hulls, rice hulls, wood sha vings etc., is an important source of variation. Broiler litter is valuable mainly for its nitrogen content, and field studies (Fontenat et al., 1971), have indicated that the average crude protein content of broiler litter obtained from various sources is about 30% on dry matter basis.

Broiler litter contains about 15% crude fiber, the major constituent of which is lignin.

It is high in ash (15%) with comparatively higher amounts of both calcium and phosphorus as compared to a natural feedstuffs.

About 50% of the crude protein is available in the form of true protein which high in glycine and somewhat low in arginine, lysine, methionine and cystime (Bha - ttacharya and Fontenot, 1966). Uric acid represent

Table (4):- Nutrient composition of broiler litter.

Dry matter basis.

	1970. 1971. 1971.	, al.,	f Kumanov et al., d Fontenot et al., h Bhattacharya et	1968.	SMcInnis et al., bCenni et al., e El-Sabban et al.,
11 e 828 f	mg/kg mg/kg	nic 3 1 2	,	1964.	
2 84 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	mg/kg mg/kg	aluminium Zinc	72.500	Kcal/kg 72	TDN (Sheep)
386	mg/kg	Boron	2181 4	Kcal/23 21	ME (Sheep)
98 6	$m_{\rm s}/{\rm kg}$	Copper	2440 a	Keal/kg 24	DE (Sheep)
451 ^e	mg/kg	Iron	29.53± 1.6 abce	50	以更更
225 e	ns/kg	Hanganese	3.3 ±1.3abcd	77	Ether extract
0.44 e	93	Magnesium	16.8 ± 1.40cm	S 16	Crud fiber
1.78 °	%	Potassium	1.6 + 3.5 HUGGIL	7.	Percent digestibility
0.54 e	%3	Sodium	23.3"abcde	\$3 23	Digestible protein
1.8 + .4 abcde	%	Phosphours	16.7 ± 2.4	31 S	True protein
2.37 • .9	96	Calcium	31.3 ± 2.9 apeae	3	Crude protein
abce 15 ± 3.2 abce	%3	Ash	84.7 ± 4.2	.8	Dry matter (DM

about 50% or slightly more of the total non protein nitrogen (NPN) of the litter, (Bhattachayra, 1964).

C_ Cattle Manure:

The chemical composition, especially the crude protein, fiber and NFE content of cattle manure varies, depending on the level of dry matter intake, roughage level and digestibility of rations used for different kinds of production (Fisher, 1974).

The nutrients composition of cattle manure is presented in table (5), percent cell wall content on dry matter basis is 46 and 63% in beef and dairy cattle manure, respectively.

Lignine content is high (15%) in dairy manure. Crude protein content of beef cattle manure, is about 20% on dry matter basis, while that of dairy manure is about 12.6%. Cattle manure contains appreciable amounts of calcium and phosphorus.

Among other minerals, iron seems to be high. Ash content of some feed lot manure seems to be very high because of contamination with foreign matter, (Johnson, 1972).