13.bank 1000

SOME STUDIES ON GROWTH PATTERNS IN BUFFALO
AND FRIESIAN CROSS-BRED BULLS
FOR MEAT PRODUCTION

A Thesis

BY

MOHAMMED H.M. SADEK

B. So. Agric., Ain Shams University (1972)

636.085

Submitted to the Department of Animal Production, Ain Shams University

in Partial Fulfillement of the Requierements for the Degree

of

MASTER OF SCIENCE
(Animal Breeding)
July 1977

Central Library - Ain Shams University

SOME STUDIES ON GROWTH PATTERNS IN BUFFALO AND FRIESIAN CROSS-BRED BULLS FOR MEAT PRODUCTION

A Thesis

BY

MOHAMMED H. M. SADEK

Approved as to style and content by:

July 1977

ACKNOWLEDGEMENTS

The writer is grateful to Professor S.S. Khishin for his valuable suggestions and continuous encouragement and support. The author is also greatly indebted to Dr. Omar Y. Abdallah Associate Professor, for suggestion the problem and for his great help while supervising this study.

Thanks are also due to Professor A.A. Asker, Head of the Department of Animal Production, for providing facilities during the collection and analysis of data included in this study.

The author finally wishes to acknowledge with gratitude the help and support rendered to him by his colleagues of the Department of Animal Production, Faculty of Agriculture, Ain Shams University.

TABLE OF CONTENTS

CHAPTE	R		PAGE
I	INTROD	UCTION	1
CHAPTE	R		
II	REVIEW	OF LITERATURE	2
	1. Cha	nges in Weights of Seperable Carsass Com-	
	pon	ents Associated with Changes in Size	2
	1,1	. Choice of an Appropriate Covariate	3
	1.2	· Genotype Differences in the Mean Trend	
		of Development	4
	1.3	. Growth Patterns	5
	2. Cha	nges in Distribution of Separable Carcass	
	Com	ponents Associated with Changes in Size	6
	2.1	. Choice of an Appropriate Covariate	6
	2.2	. Genotype Differences in the Mean Trend	
		of Development	7
	2.3	. Growth Patterns	8
CHAPTE	R		
III	EXPERI	MENTAL MATERIAL & BIOMETRICAL METHODS .	10
	1. Exp	erimental Material	10
	1.1	, Animals	10
	1,2	- Slaughter Procedure and Collection of	
		Dissection Data	11

TABLE OF CONTENTS (CONTINUED)

		PAGI
	2 Biometrical Methods	1 9
CHAPTE	R	
Ý	RESULTS AND DISCUSSION	24
	PART I. A Comparative Study of Allometric Growth Patterns of Separable Carcass Components and Muscle Groups in Buffalo and	
	Friesian Cross Bulls	24
	1. Weight of Separable Components	24
	1.1. Muscle Plus Bone Weight as an	
	Appropriate Covariate	26
	1.2. Genotypes Differences	28
	1.3. Growth Patterns	31
	2. Weight of Muscle Groups	33
	2.1. Genotype Differences	33
	2.2. Growth Patterns	37
	PART 2. Allometric Growth Patterns of Separable	
	Carcass Gomponents and their Distribution	
	& Possibility of Estimating Weight of	
	Carcass Components in Buffalo Bulls	40
	 Allometric Growth Patterns of Separable Carcass Components and their Distribu- 	
	tion	40

TABLE OF CONTENTS (CONTINUED)

	PAGE
1.1. Weight of Separable Carcass Com- ponents	40
1.2. Distribution of Separable Car- cass Components	42
1.2.1 Muscles Groups and Indi- vidual Muscles	42
1.2.1.1 Muscle Groups .	43
1.2.1.2 Individuel Mus- cles	47
1.2.2. Bone Groups and Individua Bones	.1 60
2. Possibility of Estimating Separable Carcass Components	64
2.1. Estimation of Total Side Muscle Weight	64
2.2. Estimation of Total Side Bone Weight	67
2,3. Estimation of Total Side Fat	
Weight	71
CHAPTER	
V. SUMMARY AND CONCLUSION	74
LITERATURE CITED	77

TABLES

TABL	${f E}$	PAGE
1	Characterestics of the Animal Groups Slaughtered and Completely Dissected Throughout the Investigation	12
2	Post-Weaning Feeding Schedule	13
3	Partial Regression Coefficients (b_i) Corresponding to the Regression of Criterion of Carcass Composition Considered on Separable Fat Weight and Muscle plus Bone Weight (x_2) , in the Equation $\log y = \log a + \sum b_i \log x_i \dots \dots \dots$	27
4	Constants in the Regression Equation, Adjusted Means and F - Values in the Analysis of Covariance of the Dissected Carcass Component (gm) (or Muscle Bone Ratio) as Dependent Variate (y) with the Weight of Muscle plus Bone (gm) as the Independent Variate (x) in the Equation log y = log a + b log :	:
5	Constants in the Regression Equations, Adjusted Means and F - Values in the Analysis of Covaria- nce of the Dissected Muscle Groups (gm) as Depen- dent Variate (y) with the Total Side Muscle We- ight (gm) as Independent Variate (x) in the Eq- uation log y = log a + b log x	34
6	Comparison of Relative Growth Ratios (Values of b) for Dissected Muscle Groups against Total side	
	Muscle Weight (TSMW)	44

TABLES (CONTINUED)

LABL	\mathbf{E}	PAGE
7	Growth Ratios (Values of b) and Standard Errors during 2 Phases of Growth for Muscles with Significantly Different Growth Coefficients (b) among the Phases	48
8	Comparison of Relative Growth Ratios for Dissected Individual Muscle against Total Side Muscle Weight	49
9	Relative Growth Ratios for Dissected Individual Bones or Group of Bones against Total Side Bone Weight	61
10	Multiple Correlation Coefficients of Total Side Muscle Weight (TSMW) with its Estimators	65
11	Analysis of Variance for Total Side Muscle Weight (TSMW)	66
12	Multiple Correlation Coefficients of Total Side Bone Weight (TSBW) with its Estimators	68
13	Analysis of Variance for Total Side Bone Weight (TSBW)	7 0
14	Analysis of Variance for Total Side Fat Weight (TSFW)	7 2

FIGURES

FIGU	RE	PAGE
1	Standard Anatomical Muscle Groups	18
2	Equilateral Triangle Showing the Position of Individual Buffalo, % Friesian and % Friesian Bulls for Muscle, bone and Fat as Percentages of Cold Side Carcass Weight	25
3	Double Logarithmic Plot of the Weight of the Dissected Carcass Tissue and Muscle: Bone Ratio Graphed against Muscle Plus Bone Weight	32
4	Differences Between Genotypes Adjusted Means of Weight of Muscle Groups	35
5	Double Logarithmic Plot of the Weight of the Dissected Carcass Components Graphed against Cold Carcass Weight	41
6	Double Logarithmic Plot of the Dissected Muscle Groups Graphed against the Total Side Muscle Weight	46
7	Double Logarithmic Plot of the Weight of the Dis- sected Side Muscles Graphed against the Total Side Muscle Weight. (Muscles No. 1-14)	
8	Double Logarithmic Plot of the Weight of the Dis- sected Side Muscles Graphed against the Total Side	52
	Muscle Weight. (Muscles No. 15-33)	53

FIGURES (CONTINUED)

FIGURE		PAGE
sected	Logarithmic Plot of the Weight of the Dis- Side Muscles Graphed against the Total Side Weight (Muscles No. 34-47)	54
sected	Logarithmic Plot of the Weight of the Dis- Side Muscles Graphed against the Total Side Weight. (Muscles No. 48-61)	55
sected	Logarithmic Plot of the Weight of the Dis- Side Muscles Graphed against the Total Side Weight. (Muscles No. 62-71)	56
sected	Logarithmic Plot of the Weight of the Dis- Side Muscles Graphed against the Total Side Weight. (Muscles No. 72-81)	57
sected	Logarithmic Plot of the Weight of the Dis- Side Bone Graphed against the Total Side eight	62
14 Double sected	Logarithmic Plot of the Weight of the Dis- Side Bone Graphed against the Total Side eight	63

CHAPTER I

INTRODUCTION

The composition of an animal changes as it grows older and increases in size. The changes in composition of animals that occur during normal body weight growth have to be taken into account when assessing differences in body composition between genotypes and experimental treatments. The direct assessment in terms of body composition, of changes that occur during development may be made on animals of different sizes at a prevarranged sequence of times (cross-sectional study).

Tracing genetic differences in carcass composition, by means of cross-sectional data has been the subject of extensive studies abroad. Yet, buffaloes in this respect is almost completely overlooked, and comparative anatomical growth studies of buffaloes and cattle has the author's knowledge never been conducted. This may seem unjustifiable, as buffaloes present, in many areas, a genotype particularly suited to provide meat for lean-markets. With view of offering a contribution towards filling that gap, the present study mainly seeks to eluctidate genotype influence an the weight of major carcass tissues during developmental growth using cross-sectional data of buffalo and Friesian cross bulls.

CHAPTER II

REVIEW OF LETERATURE

Berg & Butterfield (1966) provided the most practical criteria of carcass merit by stressing that it is a combination of composition, conformation and eating quality. Later, Berg & Butterfield (1967) argued the importance of the weight distribution of carcass components in evaluation the potential merit of beef animals, inasmuch as it influences carcass conformation.

1. Changes in Weights of Separable Carcass Components
Associated with Changes in Size

Extensive studies have consistently shown that changes in carcass composition are associated with changes in size and age (e.g. Hammond, 1932; Palsson, 1955; Tayler, 1964; Berg & Butterfield, 1967; Seebeck & Tulloh, 1967, 1968 a, b). The result, according to Seebeck (1968), is to take into consideration the changes in composition of animals that occur during normal body growth weight when genetic differences in carcass composition have to be traced. This can be achieved by a serial slaughter of random samples of animals over a range of live weight or at a pre-arranged sequence of time

followed by a separation of tissues. With the cross-sectional data so collected, statistical techniques are readily available, and the mean trend of development for genetic groups can be compared. As development is basically related to size of the animal rather than to the age, Boccard et al (1962); Tulloh (1963b) and Seebeck (1966) stressed on comparing animals at similar weight rather than similar age.

1.1. Choice of Appropriate Covariate

With developmental studies using a range of sizes and using conventional least-squares techniques, an independent variate, usually a criterion of growth, is needed. Against this variate (covariate), changes in caroass composition can be assessed. The within-group variation of the components will be at a minimum if they are compared at the same value of an appropriate covariate. To study the major components of the carcass, the weight of the dressed carcass, or of one side of it, has been investigated by several authors as reviewed by Seebeck (1968). An alternative approachis the use of fatfree or fat-corrected carcass weight (Wilson, 1954; Everitt, 1966) or muscle plus bone weight (Elsley et al 1964; Berg &

Butterfield, 1966; Mukhoty & Berg 1971, 1973). The exclusion of the fat tissue from being part of growth has been defended on the grounds that it is controled more by nutrition than other components of the body (Maynard 1947; Elsley et al 1964). However, Pomercy (1955) defended the inclusion of fat tissue as part of growth on the grounds that at least some of the fat has specific insulating properties. Seebeck (1968) provided a statistical enswer to this dilemma by stressing that the test of correlation between developmental criteria put forward by Seebeck & Tulloh (1966) should be done before fat-free carcass weight is used as a covariate. Seebeck (1968), examining three sets of data for correlations of developmental criterion, concluded that "a correlation between development in terms of fat and development in terms of other components" may exist.

1.2. Genotype Differences in the Mean Trend of Development

Very few investigations have been carried out to study changes in carcass composition that occur during normal body weight growth when assessing breed differences in the weight of separable carcass components. Berg & Butterfield (1966)