

Radionuclide Concentration in Some Environmental Samples from Red Sea Coast And its Associated Health Hazards

A Thesis

Submitted for the degree of Master of Science As a partial fulfillment for requirements of the Master of Science

By

Amr Ibrahim Abd El-Azeam

B.Sc. (Physics), 2007, Ain Shams University

Supervised By

Prof. Dr. Soad Abdel Monam El-Fiki

Physics Department, Faculty of Science, Ain Shams University

Dr. ElsayedSalama Ahmed

Physics Department, Faculty of Science, Ain Shams University

Dr. Hanan Mohamed Diab

Atomic Energy Authority

AinShamsUniversity Faculty of Science Physics Department

Degree: M.Sc. degree in Physics

Title: Radionuclide Concentration in Some Environmental Samples from Red Sea Coast and its Associated Health Hazards.

Name: Amr Ibrahim Abd El-azeam

Thesis Advisors	Approved
Prof. Dr. Soad Abdel Monam El-Fiki Physics Department, Faculty of Science, AinShamsUniversity	
Dr. ElsayedSalama Ahmed. Physics Department, Faculty of Science, AinShamsUniversity	
Dr. Hanan Mohamed Diab Atomic Energy Authority	

AinShamsUniversity Faculty of Science Physics Department

Name: Amr Ibrahim Abd El-azeam

Degree: M.Sc. degree in Physics

Department: Physics Department

Faculty: Faculty of Science

University: Ain Shams University

Graduation date: 2007, Ain Shams University

Registration date: 12/11/2012

Grant date: 8/9/2014

يسم الله الرّحمن الرّحيم

وَقُل رَّبِّ زِدْنِي عِلْمًا

In the Name of Allah, the Most Gracious, the Most Merciful

"..And Say: My Lord! Increase me in Knowledge"

"TAHA/114, the Glorious QurAn"

To

```
Mother,
Father,
Brothers,
Sisters,
And
Dear Wife.
```

Acknowledgement

All gratitude is due to ALLAH the most merciful, who guided and gave me strength to complete this work.

I wish to express my sincere thanks and gratitude to my team of supervisors.

I wish to express my deep thanks to **Prof. Soad Abdel Moneim El-Fiki**, professor of Radiation physics at Physics Department,
Faculty of Science, Ain Shams University, for her supervision,
honest guidance, continuous encouragement and trustful help
through the experimentation and writing the manuscript.

I would like to thank with gratitude **Dr. El-sayed Salama Ahmed**, assistant professor of Radiation Physics at Physics

Department, Faculty of Science, Ain Shams University, for his kind supervision, kind encouragement, his continuous support and kind guidance throughout the present work.

I would like to thank **Dr. Hanan Mohamed Ahmed Diab**, assistant professor of Radiation physics at National Center for Nuclear Safety and Radiation Control, Atomic Energy Authority, for her valuable help in practical applications, her advice and generous assistance and continuous helpful discussions leading always towards more perfection and achievement of this work.

I wish to express my deep thanks to my wife for her patience, encouragement and understanding and my deep thanks with gratitude to all of my family specially my parents for their continuous support and encouragement during my research.

~~-	
	TENTS
CON	

CONTENTS	
Acknowledgement	.i
Abstract	.ii
Summary	.iii
Chapter 1	
Introduction and LiteratureReview	
1.1 Introduction	1
1.2 Principles of Radioactive Transformations	2
1.3 Radioactivity in the Environment	5
1.4 Natural Background Sources	5
1.4.1 Cosmogenic Radionuclides	6
1.4.2 Terrestrials Sources of Radiation	7
1.5 Natural Decay Series	8
1.5.1 Uranium-238 Series	9
1.5.2 Actinium Series	10
1.5.3 Thorium-232 Series	11
1.5.4 Potassium-40	12
1.6 Technologically Enhanced NORM	13
1.7 Man-made Radionuclides in the Environment	14
1.8 Path Ways of Radionuclides in the Environment	15
1.9 Literature Review	17
1.10 Outdoor Radon Concentration	24
1.11 The Aim and Scope of this Study	26

Chapter 2

Theoretical Aspects

2.1 Interaction of Gamma Rays with Matter	28
2.1.1 Photoelectric Absorption	29
2.1.2 Compton Scattering	31
2.1.3 Pair Production	33
2.1.4 Combined Effect	34
2.2 Gamma Rays Attenuation	35
2.3 Radiation Detection and Measurements	37
2.4 Radiation Detectors	38
2.4.1 Semiconductor Detectors	39
2.4.1.1 Germanium Detector	43
2.4.1.1.1 Detector Efficiency	45
2.4.1.1.2 Detector Energy Resolution	46
2.4.1.2 Solid State Nuclear Track Detectors	48
2.4.1.2.1 Track Formation Mechanism	48
2.4.1.2.2 CR-39	49
2.5 Biological Effects of Radiation	51
2.6 Radiation Exposure	51
2.6.1 Internal Exposure	52
2.6.2 External Exposure	53
2.6.3 Gamma and X-Ray Exposure	54
2.7 Radiation Dose	54
2.7.1 Absorbed Dose (D)	55
$2.7.2$ Equivalent Dose (H_T)	56
2.7.3 Effective Dose (H _E)	57
2.8 Radiation External Hazards	60
2.8.1 Radium Equivalent Activity (Ra _{eq})	60

2.8.2 Absorbed Dose Rate (Dair)	60
2.8.3 Effective Dose Rate (E _{air})	61
2.8.4 External Hazard Index (H _{ex})	61
2.9 Radiation Internal Hazards (H _{in})	62
2.7 Radiation internal frazaids (II _{in})	02
Chapter 3	
Experimental Work	
3.1 General Features of the Studied Area	63
3.2 Samples Collection	64
3.3 Samples Preparation	64
3.4 Devices and Methodology	65
3.5 Gamma Ray Spectrometry	65
3.5.1 Electronic System	66
3.5.2 Detector	69
3.5.3 Shielding	69
3.5.4 Set up of the used Gamma Ray Spectrometer	71
3.6 System Calibration and Characterization	72
3.6.1 Energy Calibration	72
3.6.2 Peak Form and Energy Resolution	73
3.6.3 Efficiency Calibration	74
3.6.3.1 Absolute Efficiency Calibration Method	74
3.6.3.2 Relative Efficiency Calibration Method	76
3.7 Activity Calculation	80
3.7.1 Error Calculations	82
3.7.2 Detection Limits	83
3.8 Quality Control for HPGe Detector Efficiency Calibration	84
3.9 Radon Measurements using CR-39	86
3.9.1 Etching Methodology and its Optimum Conditions	87

2.0.2 Calibration of CD 20 Date 4	
3.9.3 Calibration of CR-39 Detector)
3.9.4 Measurements of Radon Exhalation Rates 90)
3.9.5 Measurements of Effective Radium Content 91	Ĺ
3.9.6 Measurements of Emanation Power (a) 92	2
Chapter 4	
Results and Discussions	
4.1 Part I: Analysis of NORM in Soil samples 93	3
4.1.1 Radioactivity Concentration Rational Contour Maps 97	7
4.1.2 Elemental Correlations for NORM in Soil Samples 101	1
4.1.3 Radium Equivalent Activity 104	1
4.1.4 Ambient Dose Rates from NORM in Soil Samples 105	5
4.1.5 Effective Dose Equivalent from Soils 107	7
4.1.6 Radiation Hazards Indices)
4.1.7 Quality Control for HPGe Detector Efficiency Calibration 113	1
4.2 Part II: Laboratory Measurements of Radon Activity 116	5
4.2.1 Radon Exhalation Rates 116	5
4.2.2 Effective Radium Content	3
4.2.3 Emanation Power 119)
Conclusions 121	l
References 123	3
Arabic Summary	
Arabic Abstract	

List of Tables

Table	Title	Page
(1.1)	Natural radioactive series	8
(2.1)	Radiations effects used in the detection and	38
	measurement of radiation	
(2.2)	Radiation weighting factors W _R (formerly termed	56
	quality factor) (ICRP, 2007)	
(2.3)	Tissue weighting factors (ICRP, 2007)	58
(2.4)	Recommended dose limits (ICRP, 2007)	59
(3.1)	Absolute efficiency and yield of selected gamma	76
	transitions used in activity calculations	
(3.2)	Relative intensities of gamma-rays emitted by	77
	²²⁶ Ra in equilibrium with its daughters	
(3.3)	Relative efficiency of selected gamma-rays	80
	transitions used for activity calculations	
(3.4)	Characteristics of IAEA-326 reference soil	85
	sample	
(4.1)	The activity concentrations of ²³⁸ U (²²⁶ Ra), ²³² Th	94
	and ⁴⁰ K given in (Bq kg ⁻¹)	
(4.2)	Elemental correlation between different	102
	radionuclides in soil samples	
(4.3)	Values of Ambient dose rate and Effective dose	105
	equivalent from soils	
(4.4)	External and internal hazard indices,	111
	representative level index and the total hazard	
	index values for soil samples	
(4.5)	Counting efficiencies values using relative and	113
	absolute efficiency procedures	
(4.6)	IAEA-326 measured activities using both relative	114
	and absolute efficiency methods	
(4.7)	Track density, areal exhalation rate and mass	117
	exhalation rate values of the soil samples	
(4.8)	Effective radium content and emanation power	120
	values of the soil samples	

List of Figures

Figure	Title	Page
(1.1)	A schematic diagram of U-238 series	9
(1.2)	A schematic diagram of U-235 series (Actinium)	11
(1.3)	A schematic diagram of the Th-232 series	12
(1.4)	Decay scheme of ⁴⁰ K (Lederer et al, 1977)	13
(1.5)	Environmental path ways of radiation	16
(2.1)	Effects of photon energy and atomic mass number	29
	of absorbing medium on dominant γ-ray	
	interaction	
(2.2)	A schematic representation of the photoelectric	30
	absorption	
(2.3)	The ideal photo-peak created by mono-energetic	31
	gamma-rays	
(2.4)	A schematic representation of Compton scattering	32
	process	
(2.5)	A schematic representation of pair production	33
	process	
(2.6)	linear attenuation coefficient of germanium	35
(2.7)	The different energy bands of insulators and	40
	semiconductors	
(2.8)	Schematics of semiconductor types of HPGe p or	44
	n type at the top, Cross sections Perpendicular to	
	the cylindrical axis of the crystal are shown at	
	bottom (Knoll, 2000)	
(2.9)	Definition of detector energy resolution	48
(2.10)	Comparison between the resolution of NaI (Tl)	48
	Scintillator and that of the HPGe detector for the	
(2.11)	same source	7.0
(2.11)	A photomicrograph showing etched tracks in a	50
	CR-39 (a poly- carbonate) plastic track detector	
	(Khan and Khan, 1989)	
(3.1)	Map of the studied area showing the locations of	63
(3.1)	the collected soil samples	0.5
(3.2)	Arrangement of the HPGe detector with liquid	70
(3.4)	nitrogen dewier and lead Shield	/0
	mirogen dewici and icad sincid	

(3.3)	Block diagram showing the set up of the used	71
	gamma ray spectrometry system	
(3.4)	The energy calibration curve of HPGe detector	72
	using standard point sources	
(3.5)	Efficiency curve of HpGe detector using	75
	reference samples containing multiple isotopes	
(3.6)	Relative efficiency curve of HPGe detector using	78
	²²⁶ Ra point source	
(3.7)	Intensity from energy spectra is integral (sum	80
	over channels)	
(3.8)	Typical gamma spectrum of the measured	82
	isotopes	
(3.9)	Arrangement of the CR-39 detector in a	86
	cylindrical glass container used as an emanation	
	chamber	
(3.10)	Schematic construction of the used etching	88
	equipment for track revelation	
(4.1)	The mean specific concentrations of ²³⁸ U (²²⁶ Ra)	95
	for all studied regions	
(4.2)	The mean specific concentrations of ²³² Th for all	95
	studied regions	
(4.3)	The mean specific concentrations of ⁴⁰ K for all	96
	studied regions	
(4.4)	The mean specific concentrations of ²³⁸ U (²²⁶ Ra),	96
	²³² Th and ⁴⁰ K for all studied regions	
(4.5)	Contour map showing the distribution of ²³⁸ U	98
	(²²⁶ Ra) concentrations (Bqkg ⁻¹) in the studied area	
(4.6)	Contour map showing the distribution of ²³² Th	99
	concentrations (Bq kg ⁻¹) in the studied area	
(4.7)	Contour map showing the distribution of ⁴⁰ K	100
	concentrations (Bqkg ⁻¹) in the studied area	
(4.8)	Correlation between ²³⁸ U (²²⁶ Ra) and ⁴⁰ K	103
	concentrations in soil samples	
(4.9)	Correlation between ⁴⁰ K and ²³² Th concentrations	103
	in soil samples	
(4.10)	Correlation between ²³⁸ U and ²³² Th activities	104
	concentrations in soil samples	

(4.11)	Mean values of radium equivalent activity for all	105
	studied regions in (Bq/kg)	
(4.12)	Mean values of the absorbed dose in all studied	107
	regions	
(4.13)	Contour map showing the distribution of Radium	108
	equivalent (in Bq kg ⁻¹) in the soils of the studied	
	area	
(4.14)	Contour map showing the distribution of ambient	109
	dose rate (nGy h ⁻¹) in the soils of the studied area	
(4.15)	Contour map showing the distribution of the total	112
	hazard index (H _{ex} +H _{in}) in the studied area	
(4.16)	Correlation of radium content and exhalation rate	119
	for soil samples	

Abstract

Name: Amr Ibrahim Abd El-Azeam

Title: Radionuclide Concentration in Some Environmental

Samples from Red Sea Coast and its Associated Health

Hazards.

Submitted To: Physics Department, Faculty of Science, Ain- Shams University

The specific concentration and activity levels of six main coastal regions (all lies along the Western Coast of Suez Gulf) where studied. Twenty-two soil samples were collected from the investigated regions. These regions are Ain Sokhina, Al Zafrana, Ras Gharib, Ras Shokeir, Gebel El Zeit and Hurghada. Using HPGe γray spectrometry, analysis of the collected samples has been carried out to determine the concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in samples. Moreover, radon exhalation rates, effective radium content and radon emanation power were measured by using SSNTDs in the form of CR-39. The obtained average concentrations values of ²²⁶Ra, ²³²Th and ⁴⁰K were lower than the national and worldwide average values also the average radium equivalent activity value was below the defined limit of 370 Bq/kg. The external and internal hazard indices were found to be less than 1, indicating low radiation doses. Also, it was found that samples have exhalation rates comparable with the worldwide average values. In general the activity levels of the studied regions are within the worldwide average and the public received doses within the safe limit of exposure.

KEYWORDS: Natural activity; HPGe; radon; CR-39; Suez Gulf.