OPTIMUM UTILIZATION OF

WATER HYACINTH PLANTS IN

FEEDING RUMINANTS

RY

MOHSEN MAHMOUD SHOUKRY

636.08552 B.Sc.(Agric., Animal Production), 1972 University Ain Shams

M.Sc.(Agric., Animal Nutrition), 1978 Ain Shams University

> Thesis Submitted TO

The Faculty of Agriculture, Ain Shams University IN

Partial Fulfillment of the requirements Dh D

FOR

The Ph.D.DEGREE Nutrition) (Animal

1982

Animal Nutrition Section Animal Production Department Faculty of Agriculture, Ain Shams University

APPROVAL SHEET

OPTIMUM UTILIZATION OF WATER HYACINTH

PLANTS IN FEEDING RUMINANTS

BY

MOHSEN MAHMOUD SHOUKRY

Thesis Submitted for the Ph. D. Degree

Approved by:

11 El Chilm

Committe in Charge

Date: 29 / 12 / 1982

LIST OF ABBREVIATION

ACT Acid detergent fiber .

ACID detergent lignin .

ay . Ferseem hay .

eMB:

GF Grude fiber .

Grude protein .

Digestible cruie protein .

Ory matter .

Digestible protein .

Ether sytract .

Oroso energy .

ICOMO <u>In Situ</u> try matter disaphearance .

Income It <u>Situ</u> organic matter disappearance.

IVDYD In <u>Vitr</u> Tay matter Minarcearance .

N-Malarsk - Mitroge - Dance .

NTT in the strate of the filter a

MER Mittenger Gier Withaut .

NP protection of the general

OM Proganic matter .

Iteroh equivalent .

CV teros value .

Total dipertible outriest..

Total nitragen .

water or coloner.

Water sysminth say .

Water Speciath Filage .

Central Library - Ain Shams University

CONTENTS

Page

5_{11.2}

CHAPTER I : INTRODUCTION.... 1 REVIEW OF LITERATURE..... 3 - 491. Description of water hyacinth (WH) plants.. 3 2. The history and advent of WH to the Nile... 4 Productivity of WH (E.crassipes) 6 4. Factors limiting the utilization of fresh WH as a feed for ruminants..... 8 5. Methods of processing WH 10 5.1. Partial dewatering and drying...... 10 5.2. Ensiling procedures and silage additives....... 12 6. Chemical composition of fresh and processed WH...... 16 6.1. Effect of location and season..... 6.2. Effect of processing method......22 7. Intake and acceptability of fresh and pro-7.1. Fresh, partially and completely dried 8. Digestibility and nutritive value of fresh 8.1. Fresh, partially and completely dried

8.2. Ensiled WH
9. <u>In Vitro</u> and <u>In Situ</u> evaluation of WH 41
10. Alkali treatment of poor quality roughages. 42
10.1. Effect of alkali treatment on chemical
composition of the roughages 43
10.2. Effect of NaOH-treatment (spray)on
In Vivo, In Vitro, In Situ nutrients
disappearance and food intake of
roughages45
CHAPTER II :
GENERAL MATERIALS AND METHODS
1. Description and collection of WH plants 50
2. Processing of WH plants
2.1. As silage (WHS)
2.2. As hay (WHH)52
3. Determination of IVDMD
4. Determination of <u>In Situ</u> DM, OM, N, NDF and
GE disappearance54
4.1. Animals used
4.2. Nylon bags55
5. <u>In Vivo</u> experiments56
5.1. Experimental animals56
5.2. General management of the animals56
5.3. Urine and faeces collection57
5.4. Experimental rations

Page

	Page
6. Chemical analysis	58
7. Calculations	59
CHAPTER III:	
CHANGES IN CHEMICAL COMPOSITION AND POSSIBLY	
THE NUTRITIVE VALUE OF WH PLANTS ACCORDING TO	
THEIR LOCATION OR SEASON OF HARVESTING	60-80
EXPERIMENT 1 : Effect of season and location	
on changes in chemical compo-	
sition, <u>In Situ</u> DM and OM	
disappearance and IVDMD of	
WH	60
CHAPTER IV :	
UTILIZATION BY FUMINANTS OF WH PLANTS WHEN PRO-	
CESSED AS SILAGE	81-109
EXPERIMENT 2 : Effect of soluble carbohydrate	
and type and level of ingredie	-
nts (roughages or concentrates	>
used in preparing WHS mixtures	
on their quality and nutritive	
value.	0.7

EXPERIMENT 3	: Effect of urea inclusion
	and ensiling period on quality
	of WH silages and their nutri-
	tive value 92
EXPERIMENT 4	: Effect of adding formic or
	propionic acid to WHS mixtures
	on their quality and nutritive
	value 104
CHAPTER V :	
UTILIZATION BY F	UMINANTS OF WH PLANTS WHEN PROC-
ESSED AS HAY	110-186
EXPERIMENT 5:	Effect of drying method and ext-
	raction of the juice on the che-
	mical composition and nutrients
	degradability of WHH (prepared
	from different parts of the
	plants) compared with BH 110
EXPERIMENT 6:	Food intakes and nutrients dig-
	estibility of WHH and BH given
	to water buffalo steers 145

	EXI	PERIMENT	/:	Effect on feed intake and nut-	
				rients digestibility of feed-	
				ing WHH along with either concen-	
				trates or good quality roughage	
				(BH), to goats	152
	EXF	PERIMENT	8:	Effect of alkali treatment (NaOH)	
				on chemical composition <u>In Vitro</u>	
				and <u>In Situ</u> nutrients disappea-	
				rance of WHH	162
	EXE	PERIMENT	9	:Utilization of alkali or/and urea	
				treatment WHH by mature sheep	176
CHAPTER	VI	:			
GE	NERA	AL DISCUS	SSI	NC	187-210
	1.	Changes	in	chemical composition and possibly	
		the nut	rit:	ive value of WH plants according to	
		their lo	ocat	tion or season of harvesting	188
	2.	Utiliza	io	n by ruminants of WH plants when	
		processe	ed a	as silage	190
	3.	Utilizat	io	n by ruminants of WH plants when	
		processe	ed a	as hay	197
PRA	ACT:	ICAL APP	LIC	ATION	208
FU'	TUR	E STUDIE:	S	••	209
				NS	
REFEREN	CES		• • •	•••••	225 - 253
ADARTO	CLIM	u k o v			

LIST OF TABLES

Tabl	e No.	Page
1	Morphological measurements of WH plants coll-	
	ected from the same location (El-Alage waterway)	
	during one year (January-December, 1980)	63
2	Morphological measurements of WH plants coll-	
	ected from 4 different locations at the same	
	time of the year (October 1980)	64
3	Effect of season on chemical composition of	
	different parts of WH plants	66
4	Effect of season on <u>In</u> <u>Situ</u> DM and OM disapp-	
	earance (%) and IVDMD (%) of different parts	
	of WH plants	70
_		
5	ANOVA for In Situ DM and OM disappearance and	
	IVDMD of different parts of WH plants collected	
	from one location at different months	71
c	Seenah se lambian an abantan lambian and all see	
O	Effect of location on chemical composition of	74
	different parts of WH plants	/ **
7	Effect of location on In Situ DM and OM disap-	
	pearance (%) and IVDMD (%) of different parts of	
	NO ENDANA	77

Table	No.	Page
8	ANOVA for In Situ DM and OM disappearance and	
	IVDMD of different parts of WH plants collect-	
	ed from 4 different locations at the same time	
	of the year	78
9	Proximate composition, pH and lactic acid con-	
	tent of WHS mixtures	86
10	Dry matter intake, <u>In Vivo</u> and <u>In Vitro</u> diges-	
	tibilities of WHS mixtures	88
11	Effect of urea and period of ensiling on the	
	chemical composition of WHS	96 - 9
12	Effect of urea-treatment of WHS on DM intake	
	and <u>In Vivo</u> nutrients digestibility	100
13	ANOVA for DM intake and In Vivo nutrients	
	digestibility of WHS treated or untreated with	
	urea, by sheep and water buffalo steers	101
14	Effect of formic (F) or propionic (P) acids	
	addition to WHS mixtures (prepared from different	:
	parts of the plant) on their chemical composi-	
	tion and IVDMD	108

Cable	No.	Page
15	Gross chemical composition of WHH (different	
	parts) and BH (aerial parts)	114
16	In Situ DM, OM, N and NDF disappearance (%)	
	of different samples of WHH and BH , at diff-	
	erent incubation periods	122
17	Overall effect of type of plant on % disappea-	
	rance of DM , OM,N and NDF of WHH (whole plant	
	or aerial parts) and BH (aerial parts) all	
	not pulped, at different intervals	123
18	Overall effect of type of plant on % disappea-	
	rance of DM, N, NDF of WHH (whole plant or	
	aerial parts) and BH (aerial parts) after	
	being pulped, at different intervals	124
19	Overall effect of part of the plant and pulp-	
	ing on % disappearance of DM, OM and NDF of	
	WHH at 24 and 48 hrs.	125

Table	No.	Page
20	Overall effect of method of drying on % dis- appearance of DM , OM, N and NDF, of WHH (pre- pared from whole plant, aerial parts, stems	
	and leaves, all pulped or not pulped) at different intervals	126
21	Overall effect of method of drying on % disa- ppearance of DM, OM, N and NDF of WHH (prepar- ed from whole plant, aerial parts, stems and	
	leaves, not pulped) at different intervals	127
22	Overall effect of method of drying on % disappearance of DM and NDF of WHH (prepared from whole plant, aerial parts, stems and leaves, all pulped) at different intervals	128
23	Overall effect of method of drying on % disa- ppearance of DM, OM, N and NDF of BH (pre- pared from aerial parts, intact or pulped) at different intervals	129
24	Overall effect of method of drying on % disa-	

ppearance of DM, OM, N and NDF of BH (intact

Table No Page

7

25	Overall effect of method of drying on % dis-	
	appearance of DM, N and NDF of BH (pulped plant)	
	at different intervals	131
26	Overall effect of pulping on DM, NDF disappea-	
	rance (%) of WHH (whole plant, aerial parts,	
	stems and leaves) at different intervals	132
27	Overall effect of pulping on DM and NDF disapp-	
	earance (%) of WHH (whole plant, aerial parts,	
	stems and leaves , all sun dried) at differ-	
	ent intervals	133
28	Overall effect of pulping on DM and NDF disa-	
	ppearance (%) of WHH (whole plant, aerial	
	parts, stems and leaves, all oven dried) at di-	
	fferent intervals	134
29	Overall effect of pulping on DM, N and NDF	
	disappearance (%) of BH (aerial parts) at diff-	
	erent intervals	135
30	Overall effect of pulping on DM ,N and NDF dis-	
	appearance (%) of BH (aerial parts , sun dried)	
	at different intervals	136

Table	No	Page
31	Overall effect of pulping on DM, N and NDF	
	disappearance (%) of BH (aerial parts, oven	
	dried) at different intervals	137
32	Comparative DM intake and <u>In Vivo</u> nutrients	
	digestibility of WHH and BH when given to	
	water buffalo steers	149
33	Chemical composition of feedstuffs used in	
	digestion trial with goats	155
34	Mean values with their SE for DM and water	
	intakes along with nutrients digestibility	
	and N-balance of goats given WHH in rations	
	containing BH or condentrate mixture	158
35	ANOVA for DM and water intakes and nutrie-	
	ents digestibility for goats given WHH in ratio	ns
	containing BH or concentrate mixture	159
36	Chemical composition of WHH treated or untreate	od.
50		.u 166
	with different levels of NaOH	100