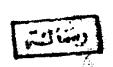
DETERIORATION OF STORED WHEAT GRAINS BY SOME FUNGI

By

MADIH MOHAMED ALY

B.Sc. Agric. (Ain Shame University) 1968


THESIS

Submitted in Partial fulfilment of the Requirements for the Degree of
MASTER OF SCIENCE in
PLANT PATHOLOGY

Ain Shams University Faculty of Agriculture Plant Pathology Dept.

1972

3-11

ACKHOWLELGIEIT

This work was carried out under the supervision and direction of Prof. Dr. A. R. Serri, Dean of Faculty of Agriculture, Ain Shans University, Zagazig and Dr. M. F. Hegazi Lecturer of Plant Pathology, Faculty of Agriculture, Ain Shans University, Cairo.

The writer wishes to express his deepest gratitude and indebendness to them for suggesting the problem, supervision, programing criticism, encouragement and direction throughout the whole work.

The writer also wishes to express his sincer thanks to Dr. S. M. F. Ahmed, Researcher in the N.C.R. and Mr. S. A. Habib, Assistant Lecturer, in Plant Pathology Department for thier help and suggestion.

Thanks also due to all members of Plant Pathology Dept. for assistance.

OOPTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	2
MATERIALS AND METHODS	15
Grain samples	\mathbf{L}^{2}
Isolation and Identification	15
Pathogenicity Tests	15
Physiological Studies	17
Storage Experimenta	26
Efficiency of Preservatives Against Mold	
Fungi and Grain Deterioration	27
Histopathological Technique	28
EXPERIMENTAL RESULTS	29
I. Mold Flora Associated with Stored	
Wheat grains	2 9
II. Identification	3).
III. Pathogenicity Tests	33
IV. Physiological Studies	35
l- Effect of relative hunidity	35
2- Effect of temperature	37
3- Effect of preservatives.	

INTRODUCTION

Wheat (Triticum vulgare) is considered as one of the most important crops in A.R.R. The annual yield was 10.109 million Ardab in 1970 (Anon. 1971). The local yield dose not cover the consumption. The shortage is compensated by importation. Both local and imported amounts are almost kept in storage a period which may exceed to one year.

In i.i.i. wheat is connercially stores in "shonas" or in elevators. Deterioration and decrease in quality occur in wheat grains when stored under unfavourable conditions i.e. high noisture content and high temperature.

As far as the writer is awar, no attempt was tried for studying the problem of deterioration of wheat grains by fungi in L.R.E. The present work was carried out to investigate the followings:

- 1 The mold flora associated with stored grains.
- 2 The Pathoginic capabilities and some physiclegical studies on these fungi.
- 3 Storage studies
- 4 The effect of some preservatives on reducing the damage.
- 5 Histopathological studies on the infected grains.

continue to grow in grains or to reinvade after harvest. They might die within few months of storage and thus did not survive much longer. Their damage was established ny length of time after harvest, and no further damage could occur during storage. The storage fungi were those which developed on and within seeds at moisture contents, often encountered in storage, principally Aspergillus and Penicillium. Aspergillus glaucus group, is one of the major fungi that invade stored seeds. It invaded wheat at moisture content of 13.2 to 15 % wet weight basis, with increasing moisture content above 15 %. Aspergillus candidus Link, Aspergillus ochraceus Wilhelm, Aspergillus flavus Link, Aspergillus versicolor (Vuillemin) Triaboschi, Aspergillus tamari: Kita and perhaps few other species of Aspergillus and Penicillium appear. Christensen and Kaufmann (1965)

Christensen and Gordon (1948) found that the principal organisms on all wheat samples tested were the same species of Aspergillus such as Aspergillus glaucus group, Aspergillus candidus Link and Aspergillus cohraceus.

Wilhelm. Penisillium sp. and Aspergillus flavus Link was flound pocksionally in small numbers.

restrictus invaded the seed of different wheats stored at moisture content 13.5 - 14.5 for 16 months. Strains of Aspergillus glaucus mainly Aspergillus repens (Coroa) de Bary and Aspergillus ruber (Spieckermann and Bernner) Thom and Church invaded seeds stored at moisture content above 15%.

Assowah and Elarosi (1961) found that Aspergillus niger ver Tieghem, Aspergillus nidulans (Eidam) Wint.
Tenicillium rubrur Stoll, Rhizopus nigricans Ehrenb, and Mucor sp. were recorded at high frequency among the fungi isolated from wheat grains stored 9 - 12 months when plated on PDA. The frequency of Curvularia sp.,
Aspergillus flavus Link, Alternaria sp., Cladosporius sp.
Clindrocarpon sp., Chaetomium sp. Fusarium oxysmatus.
Schlecht and Fusarium sp. was quite low.

Types of Changes Occurring in Storage:

A. Germination:

Christensen and Drescher (1954) found that the viability of the contaminated stored grains decreased by the increase of moisture content.

Hummel et al (1954) and Golubohuk et al (1956) found that percentage of germination decreased by the increase of temperature and time of storage in the mold contaminated grains.

Papavizas and Christensen (1960) found that wheat inoculated with <u>Aspergillus candidus</u> and kept for three months at 25°C and 16 - 16.4% moisture content showed germination of 6%, whereas the non-inoculating under the same conditions and in the same period germinated 95%.

B. Seed invasion:

Christensen and Drescher (1954), Golubchuk

et al (1956), Tuite and Christensen (1957) and

Gaur and Christensen (1966) Investigated the perpentage of kernel invasion of wheat as affected

ार्च क्लिमे क्लिक क्लिक्ट के उन्हें है है है । अने अनुसर क्लिक कि दूर के अन्य के उन्हें हैं । अन्य के अनुसर के

the state of the control of the state of the

by each of storage conditions such as moisture, temperature and time. Their investigations proved that this criterion was correlated increasingly with unfavourable conditions.

C. Pat changes:

Zeleny and Colmen (1938) reported that fat soldity value "FAV" could be used as an index for grain deterioration. This was later agreed by Anon (1960 and 1962).

Hummel et al (1954), Sorger-Domenigg et al (1955) and Golubchur et al (1956) investigated FAV as an index for the deteriorative action of commercially stored wheat. Their results proved that FAV was correlated increasingly with either high moisture content or temperature in addition to prolonged time of storage.

D. Carbohydrate changes:

Hummel at al (1954) found that nonreducing sugars decreased in moldy wheat stored at high moisture content.

Zeleny (1954) found that monreducing sugars content of grains, may be better index for moldeness degree and perhaps for over all deterioration; than fat acidity value.

Christensen (1957) reported that the increase in reducing sugars and the decrease in nonreducing sugars in moldy stored grains were attributed mainly to fungi.

E. Respiration:

Bailey and Gurjar (1918) stated that several lines of evidence indicated that high respiratory rate observed after storage at high moisture levels and moderately high temperature were chiefly due to microorganisms.

Larmour et al (1935) concluded that there were two kinds of respiration in moist wheat grains, that due to the embryo of the seed, and the other due to molds. Thus if molds could be inhibited, wheat grains with 18 - 21% moisture content would not respire any faster than those at 12% moisture content.

sulfani) mide was confirmed by Milner (1956) who found that 500 ppm of this chemical, markedly inhibited both mold growth and respiration at high moisture levels, accompanied by little effect on viability of wheat.

Milner et al (194%) treated wheat grains of 20 % moisture content, with each of calcium propionate, sulfanilamide and thioures at the rate of 1000 ppm. They found that chemical treatments resulted in lower respiratory rate, fat acidity value and mold count, than those of untreated ones. This was accompanied by unaltered viability Calcium propionate, exceptionally caused a viability decrease, besides fat acidity value increased than the check.

Vayssiere (1948) in studies sponsored by the "Food and Agriculture Organization" recommended sulfa drugs as a preserving agent of stored grains against mold causing deterioration especially for those of high moisture content, as a post-harvest and pre-storage applications.

Jensen et al (1952) reported that 8-hydroxyquinoline was an effective compound that inhibit mold growth on cotton seeds of high moisture content. content to 20 %. After 40 days of storage at 25°0 both seed germination and Kernel invasion were determined.

Measurement of deterioration development and its profits:

A - Percentage of germination:

Samples of about 100 kernels were kept at room temperature between moist filter paper in Petri dishes for about 7 days. The number of seeds which produced normal aprouts were counted and the percentage of garmination was calculated.

B - Percentage of kernel invasion:

Samples of about 100 kernels were surface disinfected, washed, placed on malt-salt-agar, then
incubated at 28°C for 7 days. Kernels that exhibited growth of one or more mold fungi were counted
and then the percentage of kernel invasion was calculated (Christensen and Drescher 1954).

Physiological Studies:

Growth measurement:

The linear method was used for measuring the radial growth of the tested fungi. Two diameters at right angle

Germination of spores:

Spore suspension was prepared by adding 10 - 20 ml sterilized water to 12 days old culture of the tested fungus. The spores were then separated with a chancl's-hair brush. Two crops of this suspension were placed on a slide over two glass rings on the bottom of the Petri dush containing sterilized water to offer adequate humidity. A set of four dishes were then incubated for 24 hours for the different treatments. The percentage of Serminating spores was calculated out from 100 - 200 spores from microscopic fields chosen at random.

Effect of relative humidity :-

The method devised by Solmon. (1951) was used to obtain relative humidities 65, 70, 75, 80, 85, 90 and 100 % To study the effect of relative humidities on linear growth. Petri dishes containing Ozapek's agar medium were inoculated with fungal discs and turned up-side down. Different concentrations of KOH to give different humidities, were poured in the lids of the dishes.

To determine the relative humidity required for germination of spores, fine films of Czqpek's agar medium were prepared on slides placed over two glass rings

Bedvoing and nonreducing sugars:

They were determined by the alkali ferrioganide method offered by Anon.(1962), which could be summarized as follows:

Bugars in 5.675 g of wheat flour were extracted

using 5 al ethanol and 50 al scetic acid buffer solution

(3 al glacial scetic acid, 4.1 g anhydrous acidum acotate,

4.5 al sulfurio acid and distilled water to complete litre).

Other constituents rather than sugars were precipitated

using acidum tragestate, 10 al of potassium ferricyanide

reagant (0.11) were boiled with 5 al of previous filtrates,

in water bath. The reduced farricyanide volume was cal
oplated by substracting the al volum of thicaulfate re
quired from the al volume of alank check. Reducing sugars

were calculated as mg maltose per 10 g flour referring to

the ferricianide. Maltose, success conversion table (fine

represented the total of reducing and nonreducing sugars was calculated. The previously calculated all of ferricysnide reduced only by reducing sugars were substracted from this volume. The difference was expressed as mg sucrose per 10 g of flour referring to the same table.

Respiratory rate:

It was determined at 37.8°C (100°F), employing 100 g of each sample under controlled siriation in an apparatus devised by Bailey (1940). The incoming air passed through series of bottles containing sodium hydroxide and barium hydroxide to give carbon dioxide-free air, then passed through series of bottles containing sulfuric soid of specific gravity required to bring the air to relative humidity in equilibrium with moisture content of the grains, then passed through bottles containing the samples and at the end it passed through a gas absorbors containing standard barium hydroxide.

At the begining of the trial sufficient carron
dioxide free sir was drawn through the grains to replace
completely all the air is the system. The the rebody con-

and the state of t