PHYSICAL, GEOCHEMICAL CHARACTERISTICS AND
URANIUM EXTRACTION FROM URANIUM BEARING
PHOSPHATES EAST_LUXOR

Ву

FARID ABD EL-WANEES EL-MAHROOK

(B.Sc.)

A Thesis submitted to the Faculty of Science, Ein Shams University in partial fulfilment of the requirements for the Degree of

MASTER OF SCIENCE

5096

546. 43 F. A

1972

To my Wife, Laila and to my Child Ahmed.

ACKNOWLEDGAEITES

Previously Dean of the Faculty of Science, Ein Shams
University and Prof. E.M. El Shazly, Head of the Geology
and Raw Materials Dept. and Deputy Director of Atomic
Energy Establishment for Supervising the present work.
The author is also grateful to Dr. N.M.T. El Hazek,
Head of the Leaching Unit, Geology and Raw Materials
Department for taking part in the supervision.

The author thanks Dr. T.A. Sayyah for his helping in the interepretation of the phosphate minerals by X-ray diffractions. The author is grateful to all his colleagues in the Leaching Unit and Mast Luxor Field Party of the Geology and Raw Materials Dept. for their cooperation.

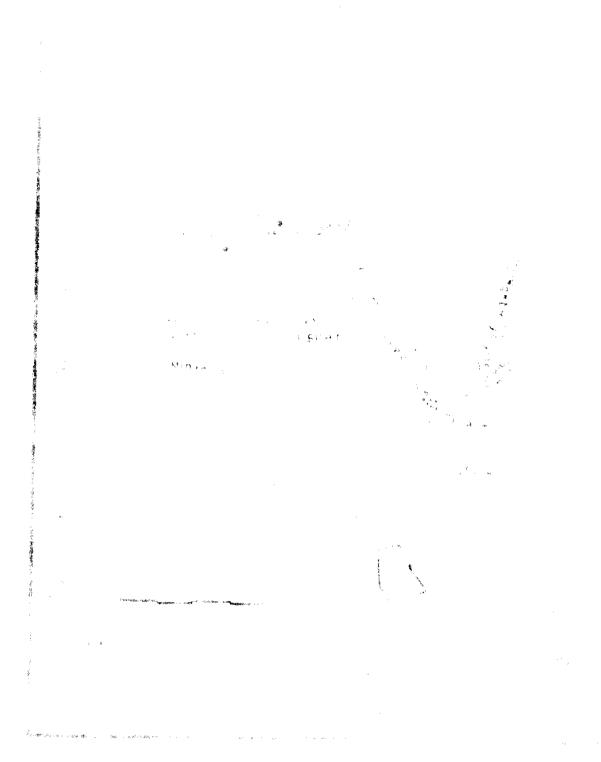
ARIC OF CONTENTS

1 - 7 - 1 7 ST - T - T	er vina i Pri	entre	4 112
AUKROWLE	دشتهان (غاما		· 4
CHAPTER	I : 1	INTRODUCTION	<u>-</u>
CHAPTER		PETROGRAPHICAL AND MINERALOGICAL	
		INVESTIGATIONS OF EAST LUXOR PHOSPHATES.	9
	-	- PETROGRAPHICAL INVESTIGATION	9
		- The Bone Phosphate ;	9
		- The Normal Phosphate I	Jl.
		- X-RAY DIFFRACTION ANALYSIS 1	L 4
	,	- INVESTIGATION BY INFRA RED SPECTROSCOPY 3	3
		- Absorption at 3600-3100 cm ⁻¹ 3	35
		7	3 7
		٦	3 7
		n	38
		7	38
			41
		7	45
			47
		Appoint an oro and page of	-T-(
CHAPTER	RIII	: METHODS OF CHEMICAL ANALYSIS AND	
		ANALYTICAL RESULTS OF EAST LUXOR PHOS	
		PHATES	56
		1- Silica	56
		2- Aluminium and Iron Oxides	57
		3- Total Iron	57
		4_ Calcium Oxide	58

	5-Magnasam Oxide	ਐੜਉਵ 58
	6-Phosphorous Oxide	58
	7-Carbon Dioxide	59
	8-Sulphate	60
	9-Chloriáe	6 L
	10-Fluorine	62
	ll-Organic Matter	62
	12-Uranium	63
	13-Analysis of Trace Elements	65
CHAPTER IV:	PETROGENETIC ASPECTS OF EASL/TUXOR	
	PHOSPHATES	72
	- Source of Phosphorous	76
	- Physico-Chemical Factors of Formation	
	of Marine Phosphorite	7 8
	1- Phosphate/pH Variation	79
	2- Calcium/Phosphate Variation	81
	3- Calcium/Carbonate Variation	81
	- Apatite-Calcium Carbonate Inter-	
	Relationship	82
	I- Coprecipitation of Apatite and	
	Calcium Carbonate	83
	II- Procipitation of Apatite Alone ; .	85
	III- Mutual Replacement Reactions	86
	- Genetic Aspects of East Luxor Phos-	
	nhates	90

CHAPCES V: MOREHEMISTRY OF MAJOR AND TRACE ELEMENTS	·
IN EAST LUXOR PHOSPHATES	96
- Geochemistry of Major Elements	9 6
Silica,	96
Alumina	97
Total Iron	98
Calcium Oxide	99
Phosphorous Oxide	100
Anionic Components, (CO2, SO3, F)	101
- Geochemistry of Trace Elements	104
Ghromium	104
Manganese	105 '
Strontium	107
Vanadium	108
Yttrium	109
Zireonium	111
CHAPTER VI: GEOCHEMISTRY OF URANIUM IN MAST LUXOR	
PHOSPHATES	112
- Source of Uranium in Phosphates	113
- Chemistry of Uranium in the Ocean	1.15
- Mode of Occurrence of Uranium in East	
Luxor Phosphates	1.17
1- Homogenity of Uranium Distribution.	123
2- Preferential Dissolution of Uranium	
Z= Fret cremoter proportion of or armore	124

	£9. :
3- Granulometric Analysis	125
-Oxidation State of Uranium in Apatite	
(Uranous Vs. Uranyl)	129
-Relation of Uranium to Composition of East	
Luxor Phosphates	136
Uranium-Phosphorus Oxide	137
Uranium-Carbon Dioxide	144
Uranium- Sulphate	145
Uranium-Silica	146
Uranium-Fluorine	146
Uranium-Organic Matter	148
Uranium-Trace Elements	148
CHAPTER VII: RECOVERY OF URANIUM FROM PHOSPHATES AND	
STUDIES ON EAST LUXOR PHOSPHATES	149
- Potentialities of Uranium Recovery	
From Phosphate Processing	152
I - Wat Process Phosphoric Asia (Tric	ple
Superphosphates)	152
Ion Exchange Process	154
Precipitation Techniques	154
Solvent Extraction	15 6
II- Superphosphate Industry	160
III- Modified Net Process Phosphoric	
жоја	163


	i : :
-Scope of the Present lork	16.7°
Choice of Selective Leaching	
Reagent	170
-Study of Leaching Characteristics	
of East Luxor Phosphates and Its	
Uranium By Hydrochlorie Acid	173
-Studies of the Leaching Characteristi	.cs
of East Luxor Raw Phosphates	176
Leaching Under Normal Conditions.	176
Leaching Under Oxidizing Conditions	,177
Leaching Under Reducing Conditions.	177
-Discussion and Evaluation of Results	178
CHAPTER VIII: SUMMARY AND CONCLUSIONS	182
REFERENCES CITED	196
ARABIC SUMMARY.	

CHAPTER I

INTRODUCTION

The investigated phosphates occur some 100 km to the east of Luxor City and they occupy mainly Wadi El Gidami area to the north as well as Wadi El Mushash area to the south (Plate I). The Phosphate Formation belongs to the Campanian-Maestrichtian age (Upper Cretaceous) and are composed of both phosphatic bands and coprolite bone beds interbedded in marls, shales, and limestones. According to their radioactivity, the phosphates of East Luxor area could be classified into two distinct types: a highly radioactive type including essentially the coprolite bone beds with a maximum attained activity of 350 uR/h. The second type is represented actually by soft (normal) phosphate beds in which the distribution of radioactivity is ranging from 50 - 120 uR/h. In both types the tricalcium phosphate ranges from 40 to about 70% and its comenting material is composed mainly of calcite and/or silica.

The present work deals with the mineralogy as well as the geochemistry of East Luxor phosphates with special emphasis on the geochemistry of uranium

in these ores. This has actually involved the study of the effects of other constituents which would prove as effective parameters or creators of favourable media for the uranium precipitation in phosphate deposits. Furthermore a detailed study about the actual distribution of uranium in different grain sizes is done using selective disintegration of the carbonate-cemented phosphate with acetic acid.

The performed mineralogical studies include different methods of investigation; namely the petrographical
examination of microscopic thin sections, X-ray diffraction
and infra red absorption techniques. Also, the different
mades, manner of occurrences as well as associations
and features of phosphates are treated. Besides, the
physico-chemical factors which control phosphate precipitation in sea water are discussed. From this discussion
and in the light of petrographical and mineralogical
investigations, the generic aspects of East Luxor
phosphates are presented.

On the other hand, the geochemical investigations involved the complete chemical analysis of some (36) representative samples. Major elements analyzed by wet chemical methods include P_2O_5 , CaO, Al_2O_3 , MgO,

re203, CO2, SiO2, SO3 and or anic matter beside the contained U and F values. Also X-ray fluorescence analysis has been used for the determination of some significant trace elements such as V, Mm, Zr, Cr Y, Sr and W, for twenty eight samples. The latter obtained results have been plotted on scatter diagrams to show any mutual relationship with uranium. Furthermore different correlation coefficients of the mentioned results have been calculated in order to express numerically the order of correlation of different components.

The present thesis also deals with an applied technological study for the possible recovery of uranium as a by-product during phosphate processing for fertilizers (superphosphate, triple superphosphate) or essential phosphate chemicals. This has necessitated actually a detailed study of the behaviour of leachability of both uranium and phosphate using hydrochloric acid. Due to the fact that uranium leaching is based upon its oxidation state, the leaching experiments have been performed under different conditions including oxidizing, normal or reducing conditions. Sulphuric acid has not been used in the present

study since it is produced mainly from imported pyrite beside the lact that some of the dissolved uranium values are lost in the resultant gypsum.

As far as the author is aware no geochemical mineralogical or leachability tests have been conducted on the phosphates in the investigated area. The stratugraphy of some phosphate localities in the Nile Valley including the investigated area is given by Ghanem et al (1970), while the detailed geology of East Luxor area is carried by the Atomic Energy Authority, geological party. However, several mineralogical and geochemical studies have been carried out on phosphate deposits from othercareas in Egypt.

CLEPTER II

PETROGRAPHICAL AND MINERALOGICAL INVESTIGATIONS OF EAST LUXOR PHOSPHATES

The mineralogical composition of phosphate deposits has been treated by several authors, however the subject is still actually a matter of confusion. Apatite, the major constituent of these deposits, denotes a group of minerals and is chemically a basic tricalcium phosphate with F or OH ions in the lattice.

According to Rogers in 1922 (McConnell, 1950), fossil bones are composed of the mineral collophane and he also believed that collophane is the principal constituent of rock phosphates. Later on, the same author (1924), has demonstrated that most fossil teeth and bones are principally composed of varieties of apatite. This was later ascertained actually both by Stauffer in 1938, as well as by Ellison in 1944 (McConnell, 1950) from their work on conodots.

McConnell (1950) suggested the usage of collophane to denote a natural microcrystalline phosphatic material which by X-ray diffraction, gives a pattern similar to that of apatite. On the other hand, Mckelvey et al (1952) have pointed out that colloform carbonate-fluorapatite is the