COMPRESSIBILITY OF SANDY SOILS

Ву

MONA MOHAMED EID

Demonstrator in Faculty of Engineering

Ain-Shams University — Structural Department

A Thesis Presented to
Ain-Shams University
in application for the Degree of
MASTER OF SCIENCE

in
CIVIL ENGINEERING

1972

A.K. Journal Idean Marine

ACKNOWLEDGEMENT

This work has been carried out under the supervision of Dr.-Ing. Abdelmonem Ahmed Moussa, Assistant Professor of Soil Mechanics and Foundations, Faculty of Engineering, Ain-Shams University, and Dr.-Ing. Farouk Ibrahim El-Kadi, lecturer in Soil Mechanics and Foundations, Faculty of Engineering, Ain-Shams University, to whom I am deeply indebted. Without their effort, this work would not have been executed in its presentorm.

To Dr.-Ing. MOUSSA, I also feel grateful in multitude of ways, for planning the work, for continuous help and invaluable advice in the experimental part and revising the manuscript.

Grateful thanks are also due to Dr.-Ing. EL-KADI for his help and valuable guidance and advice.

Thanks are also due to the technicians of the laboratory of Soil Mechanics, Faculty of Engineering, Ain-Shams University for their cooperation and friendly help.

(**ii**)

CONTENTS

	Page
Acknowledgement	i
Contents	ii
Notations	xi
Introduction	1
Part I: Historical review and Provious work	2
1. Types of deformation	2
1 1 Elastic deformation	2
1.2 Plastic deformation	2
1 2 1 Sliding between particles	2
1 2.2 Particle crushing	3
2. Brief historical review and previous work on compressibility of sand	3
2.1 Theoretical approach	4
2.2 Experimental approach	16
3. Effect of fine material on the mechanical properties of sand	29
3.1 Effect of fine materials on the compressiblity of sand	29
3.2 Effect of fine materials on bearing capacity and shear properties	31
4. Discussion to previous work	31

		Pag
Part II	: Experimental results and discussion	36
1. Test	ed soil	3 6
1.1	Properties of tested sand	36
1.2	Properties of tested silt	37
2. Comp	ression apparatus	40
2.1	Compression cell	40
2.2	Loading frame	45
3. Prep	aration of samples	45
4. Pack	ing of soil specimen in compression cell	48
5. Perf	ormance of compression test	50
6. Test	programme	52
7. Test	results	53
7.1	Relationship between stress and strain	53
	7.1.1 Effect of density and percentage of	61
	fines F % on parameter "a"	
	7.1.2 Effect of density and percentage of	63
	fines F % on parameter "k"	
	7.1.3 Effect of density and percentage of	63
	fines F % on parameter "c"	
7.2	Relationship between initial void ratio e i and parameters "a" and "k"	66
7.3	Relationship between percentages of fines F%	70
	and parameters "m,", "n,", "mo" and "no"	
	et of the percentage of fines on the compress- ity of sandy soil	81.
-	ct of art of mixing sand with fines on its	85

(iivi)

		Page
10.	Effect of adding water, during the compression test, on the compressibility of the tested soil	90
	10.1 The effect of initial density	94
	10.2 The effect of the applied axial stress, and percentage of fines	94
11.	Summary and conclusion	100
12.	References	102
13.	Appendix	107

(🌴)

LIST OF FIGURES

Figure		Puge
1.	Graphical estimation for parameter $oldsymbol{\sigma}_{ m c}$ of Terzaghi's equation (Muhs,1957,P. 946)	7
2	Stress-strain curve for partially saturated soil (Moussa, 1961, P. 29)	20
3.	Effect of fine material on the compressibility of sand at = 1 kg/cm2 (Moussa, 1961, P. 120)	30
4 .	Grain size distribution curve for tested sand	38
5.	Grain size distribution curve for tested silt	39
6,	Effect of sample thickness on the compress- ibility of fine sand tested in Oedometer, floating ring type, D = 10 cm (Muhs and kany, 194	42 5)
7.	Oedometer compression cell	43
8.	Comparison between results obtained from compression tests in Oedometer with different ring ratios H/D (Moussa, 1961, P. 97)	44
ĝ.	Lever system of compression apparatus	46
10.	Time settlement curves for samples No. IV, VIII and \boldsymbol{X}	51
11.	Compression curves for dry clean sand (samples No.I)	54
12.	Compression curves for dry sand containing 25 silt (samples No. II)	56
13.	Compression curves for dry sand containing 10.7% silt (sample No. VII)	57

the second trap

Figure		P.g
14	Compression curves for dry sand containing 20% silt (sample No. X)	5 8
15.	Relation between parameter "a" and initial void ratio a	62
16	Relation between parameter "c" and initial voild ratio e	64
17.	Relation between parameter "c" and percentage of fines F%	65
18.	Sketch illustrating the relationship between $\hat{\xi_1}$, $\hat{\xi_{10}}$ and $\mathbf{e_i}$	68
19.	Relationship between parameter "m", and percentage of fines F%	72
2 0·	Relationship between the logarithm of parameter "n", and the logarithm of percentage of fines F%	73
21.	Relationship between the logarithm of parameter "m ₁₀ " and the logarithm of percentage of fines F%	7 4
22.	Relationship between the logarithm of parameter "n ₁₀ " and percentage of fines F%	75
23.	Comparison between results obtained from compression tests and those obtained from the deduced formulae for sample No.III	7 8
24.	Comparison between results obtained from compression tests and those obtained from the deduced formulae for sample No-V	79
25	Comparison between results obtained from compression tests and those obtained from the deduced fromulae for sample No.X	80

(**vii**)

r'igure		Page
26.	Relationship between percentage of fines F% and the strain ξ at $\sigma = 1 \text{ kg/cm}^2$ for variable relative densities	83
27	Relationship between percentage of fines F% and the strain \mathcal{E} at $\sigma = 10 \text{ kg/cm}^2$ for variable relative densities	84
2 8	Comparison stress-strain curves for mix containing 4% silt (Sample No III mixed in dry), (samples No III. mixed in wet)	86
2 9	Compression curves for samples No. III	88
3 0	Stress-strain curves for samples No. I subjected to water during compression test	91
3 1	1.tress-strain curves for samples No. II subjected to water during compression test	92
32	Stress-strain curves for sample No. VII subjected to water during compression test	93
33	Relationship between percentage increase in strain & { % due to adding water during compression test, and the initial dry density (sample No. II)	95
34	Relationship between percentage increase in strain & 10 due to adding water during compression test, and the initial dry density (sample No. IV)	96
3 5	Relationship between percentage increase in strain 42% due to adding water during compression test, and the initial dry density (sample NO VIII)	97

(***!**41)

Figure		Page
36	Relationship between percentage of fines F% and percentage increase in strain %	99
	due to adding water at different applied stresses during compression test	

(tr)

LIST OF TABLES

Tabla		Page
1	Values of parameters "v" and "w" for different soils (Gnde, 1951)	9
2	Range of values of parameters "a", "k", "v" and "w" for sand tested by Moussa (1961)	19
ڎٙ	Summary of previous theoretical work discussed in article 2.1	27
4	Summary of previous experimental work discussed in article 2.2	2 8
5	Values of parameters "a", "k", "v", and " $_{W}$ " given by different authors	32
6	Grain properties of tested sand	37
7	Physical properties of tested silt	37
8	Mix number of samples	48
9	Test programme	52
٦.٥	Values of parameters "a", "k", and "c" for the tested samples	60
11	Values of parameters "m _l ", "n _l ", "m _{lo} ", and "n _{lo} "	69
13	Equations for parameters "a", "k" and "c"	76
13	Values of anax and enix for the tested samples	82
14	Values of parameters "a", "k" and "c" for dry	89

137)

LIST OF PICTURES

Picture	,	Page
1	Compression apparatus	47
2	Built-up the specimen in the compression	49
	cell	

(******)

NOTATIONS

a	parameter in equation (30), page 19
e	parameter in equation (30), page 19
D _r (%)	relative density
d ₁₀ (mm)	effective grain size = grain size at which lo percent of the material is smaller
d ₃₀ (mm)	is the size of which 30 percent of the material is smaller
d ₆₀ (mm)	is thousake of which . 60 percent of the muterial is smaller
E (kg/cm ²)	modulus of linear deformation
е	void ratio
oi	initial void ratio
emax	maximum void ratio
e _{min}	minimum void ratio
F (%)	percentage of fine materials contained in sand
${\tt G}_{{\tt S}}$	specific gravity
k	parameter in equation (30), page 19
L L (%)	liquid limit
n ₁ (%)	parameter in equation (49), page 67
n ₁₀ (%)	parameter in equation (50), page 67
n_1	parameter in equation (49), page 67
nlo	parameter in equation (50), page 67
r ₁	correlation number for the relationship between strain and initial void ratio at stress = 1 kg/cm ²

r ₁₀	correlation number for the relationship between strain and initial void ratio at stress = 10 kg/cm ²
r_{\min} (allowable)	minimum allowable correlation number
P L (%)	plastic finit
P. I. (%)	plasticity index : L.L P.L.
$\Gamma_{\mathbf{J}}$	uniformity coefficient by "Allen Hazen" d_{60}/d_{10} (Terzaghi and Peck, 1948, P. 20)
U ₂	uniformity coefficient by Wagner (1957): $(d_{30})^2 / d_{60} d_{10}$ (Bureau of Reclamation)
$y_{\text{dry}} (t/n^3)$	dry density
٤ -	strain
∆ € (%)	percentage increase in strain
,	strain of the auxiliary line at stress (equation (43), page 55)
ξ ₁	strain of the auxiliary line at stress = 1 kg/cm ²
٤ 10	strain of the auxiliary line at stress = 10 kg/cm ²
(kg/cn ²)	stress

INTRODUCTION

In nature, sand may be found mixed with fines such as silt and clay. Previous studies on sand indicate that proper attention was given mainly to the mechanical properties of clean sand. On the other hand, the mechanical properties of sandy soils which contain some fine materials are not well known.

The purpose of the present work is to study the compressibility of dry sand containing some fines. Accordingly, compression tests have been carried out in Oedometer on samples of dry clean sand mixed with variable percentages of silt. The stress-strain relationship for the tested soil is discussed and the analysis of the test results are represented in the form of semi-emperical relationships.

Other series of compression tests have been carried out to study the compressibility of the tested soil when subjected to water.

The present work consists of two main parts, the first deals with a review to previous work, and the second deals with the experimental phase, presentation and discussion of test results and conclusion