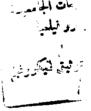
AIN SHAMS UNIVERSITY

Faculty of Science Mathematics Department

THEORY AND APPLICATION OF ZERO-KNOWLEDGE **PROOFS**


BY MAGED MOHAMED ABD EL-LATIF ELGENDY

Research Development Centre NATIONAL DEFENCE COUNCIL

THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN SCIENCE

(Pure Mathematics)

Supervised by

Prof. Dr. Bayoumi I. Bayoumi

Department of Mathematics, Faculty of Science, Ain Shams University

Dr. Mohamed M. Kouta

Department of Computer Science and Operations Research, Military Technical College

M. Koute

Dr. Fathy S. Holail

Head of C.R. Division Research Development Centre National Defence Council

Fathy S. Holail

CONTENTS

Pag	
ACKNOWLEDGEMENT	j
SUMMARY ii-	V
ABSTRACT	
CHAPTER 1 Complexity-Theoretic Foundations of Cryptography	1
1.1 The Theory of Resource-Bounded Computations	2
1.1.1 Introduction	
1.1.2 Deterministic Polynomial-Time Computations	
1.1.3 Nondeterministic Polynomial-Time Computations	4
1.1.4 Probabilistic Polynomial-Time Computations	
1.1.5 One-Way Functions	
1.1.6 Indistinguishability of Random Variables	7
1.1.7 Pseudo-Random Generators	l
1.1.8 Deterministic and Nondeterministic Public-Key	
Cryptosystems	2
1.1.8.1 Trap-door, One-way Functions	3
1.1.8.2 Deterministic Public-Key Cryptosystems 14	
1.1.8.3 Nondeterministic Public-Key Cryptosystems 15	5
1.2 The Theory of Average-Case Complexity	7
1.2.1 Introduction	7
1.2.2 Average Case Intractability of Complete Problems 17	,
1.2.2.1 Randomized Tiling Problem	J
1.2.3 Polynomial Time Solvability for Some NP-Complete	
Languages on Average	i

1.2.3.1 Randomized Hamiltonian Circuits with	21
Edge Probability p	21
1.2.3.2 Randomized Graph-3Colouring	21
1.2.3.3 Randomized Subset Sum Problem	21
1.2.3.4 Randomized 3-Satisfiability Problem	22
1.2.3.4 Randomized 3-Gatistics	
Tora Knowledge Proofs	23
CHAPTER 2 Zero-Knowledge Proofs 2.1 Zero-Knowledge Proof Systems	24
2.1 Zero-Knowledge Proof Systems	24
2.1 Zero-Knowledge Proof 2.1.1 Introduction	25
2.1.2 Minimum and Maximum Disclosure Proofs	26
2.1.2 Interactive Proof Systems	=-
2.1.3.1 An interactive Proof System for Quadratic	
Nonresiduosity	30
2 1 3 2 An Interactive Proof System for Graph	
Nonisomorphism	30
2.1.4 Zero-Knowledge Interactive Proof Systems	32
2.1.4 Zero-Knowledge interactive Proof	
2.1.4.1 A Zero-Knowledge Interactive Proof	34
for Graph Isomorphism	
2.1.5 Zero-Knowledge Interactive proof Systems	38
Com All MP-I anguages	
Townladge Proofs of Knowledge	
To Alien	
2.2.1 Introduction	43
2.2.2 Zero-Knowledge include:	44
2.2.2 Zero-Knowledge Proofs of Identity	

2.2.4	4 Feige-Fiat Shamir Identification Scheme	46
CHAPTER 3	Multi-Prover Zero-Knowledge Proofs	49
3.1 Intro	oduction	50
3.2 Bit (Commitment Schemes	50
3.2.	1 Naor's Bit Commitment Scheme	
	using Pseudo-Randomness	52
3.2.	2 Naor's Scheme for Commit to Many Bits	
	using Pseudo-Randomness	53
3.3 Mul	ti-Prover Zero-Knowledge Interactive Proof Systems	54
3.3.	1 The k-Prover Model: Formal and Informal Definitions .	. 54
3.3	2 Perfect Zero-Knowledge Proofs using 2-Prover	
	for NP languages	56
3.3	.3 Efficient Identification Scheme using 2-Prover	
	Interactive Proofs	63
CHAPTER 4	Interactive Proof Systems for PSPACE Languages	66
	oduction	. 67
4.2 The	Quantified Boolean Formula	. 67
4.3 The	Arithmetization of Boolean Formulas	101
4.4 <i>PSP</i>	PACE ⊂ IP	70
4.4.	1 The Functional and The Randomized Form of	
	An Arithmetic Form, A	70
4.4.	2 The Interactive Protocol for Proving that	
	$A \neq 0 \pmod{p}$	71
4.5 Inte	eractive Proofs for PSPACE Languages in One Round	

CHAPTER 5 A Zero-Knowledge Interactive Protocol for a Random	
<u>NP Language</u>	76
5.1 Introduction	. 76
5.2 Invulnerable Generators	. 76
5.3 A Two-Envelope Zero-Knowledge Interactive Protocol	
for a Random Tiling Problem	79
5.4 A Two-Prover Perfect Zero-Knowledge Interactive Protocol	
for a Random Tiling Problem in One Round	. 88
5.5 Summary and Discussion	. 89
REFERENCES	. 91
ARABIC SUMMARY.	

LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS

p	The complexity class of average polynomial time problems. The class of languages recognized by an Arthur-Merlin
•	
	The class of languages recognized by all Artiflat-World game of $q(n)$ message exchanged.
BCS* E	Bit commitment scheme. Bit commitment scheme without any intractability assumptions. The i^{th} bit of a pseudo-random sequence on a seed s .
CZK	The class of problems whose complements are in <i>NP</i> . The class of languages which have computational zero-knowledge proofs.
GI GNP G GSC GMW G $G_j(s)$	Deterministic Turing machine. Graph isomorphism problem. Graph nonisomorphism problem. Graph 3-colourability. Goldreich, Micali and Wigderson. The first j bits of a pseudo-random sequence on a seed $s \in \{0, 1\}^n$.
IP .	Interactive proof system. The class of languages which have interactive proofs. Interactive Turing machine.
	The class of languages which have multi-prover interactive proofs. The simulator of V^* .
	The class of languages recognizable by nondeterministic polynomial-time Turing machine.
PZK	The probability that (P, V) accepts the common input x . The class of languages which have perfect zero-knowledg proofs. The conversation space between P and V , on input x .
	k-prover interactive protocol.

PSPACE	The class of all languages recognizable by polynomial space bounded <i>DTM</i> programs that halts on all inputs.
QRA QBF	Quadratic residuosity assumption. Quantified Boolean formula problem.
RNP RTP RSA	The class of randomized decision problems. Randomized Tiling problem. Riverst, Shamir and Adleman.
$x \oplus y$ $x \in \{0, 1\}^n$ SZK Sym(N)	The bit by bit exclusive-or of bit strings x and y . x is a string of n bits. The class of languages which have statistical zero-knowledge proofs. The set of all possible permutations on N where $N = \{1, 2,, n\}$.
V V* V _P (x) View _{(P1,, Pk, 17} (x)	Verifier. Cheating verifier. V 's output after interacting with P on a common input x . The verifier's view during the protocol.
$ZKIPS$ Z_p	Zero-knowledge interactive proof systems. The set of integers $\{0,, p-1\}$, where p is a prime. We can view Z_p as a group with respect to addition modulo p .
Z* _p	The set of integers $\{z \in \{0,, p-1\}: gcd(z, p) = 1\}$. We can view Z^*_p as a group with respect to multiplication modulo p .
3SAT μ ν(n)	3-Satisfiability problem. Probability distribution function. Any function vanishing faster than the inverse of any
[] {0, 1} ⁿ "	polynomial in n . Decision problem. The set of all bit strings of length n . The concatenation of n l bits.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and thankfulness to **Prof. Dr. Bayoumi Ibrahim Bayoumi,** Professor of Mathematics, Faculty of Science, Ain Shams University, for supervision, invaluable advices and comments and for his help during the preparation of the thesis.

I would like to express my deepest gratitude to **Dr. Mohamed Mahmod Mohamed Kouta**, Assistant Professor of Computer Science,
Military Technical College, for suggesting the interesting point of research,
kind supervision and offering unfailing support during the work.

I would like to express my deepest gratitude to **Dr. Fathy Saad Holail**, the Head of C. D. Division, Research Development Centre, National Defence Council, for his valuable guidance. helpful and useful discussions concerning this work.

I would like to express my deepest gratitude to **Prof. Dr. V. J. Rayward**-Smith, School of Information Systems, University of East Anglia, Norwich,
United Kingdom. I owe him so much for his kind and sincere scientific
supervision all through the year I spent in his lab.

Finally, to my parents and my wife.