### COMPUTER AIDED DESIGN

OF

MOS/LSI

### A THESIS

Submitted in Partial Fullfilment For the Degree of MASTER OF SCIENCE

BY

### A.K.RAMZY

B.Sc. of Electrical Engineering

( 6

Under The Supervision of Prof. M. Marzouk Ibrahim

621.3840535

11793

Electronics & Computer Engineering Department
Faculty of Engineering

Ain Shams University

1980

### ACKNOWLEDGMENT

First of all I thank God who helped me greatly in this work. I would like to express my deep appreciation to Dr. M. N. Saleh and Prof. M. M. Ibrahim for their guidance, helpful dicussions, and providing all possible facilities. Also, I wish to express my sincere appreciation to my parents for their encouragement and great assistance.



### APPROVAL SHEET

### COMPUTER AIDED DESIGN

OF

MOS/LSI

Approved by:

Prof. Dr. Ahmed A. Kamal Mandally M.S. Metwally M.S. Metwally Prof. Dr. Mohamed M. Ibrahim Marzouk Ibrahim

Committee in charge

Date 18 / 3 / 1980.

## CONTENTS

|   |                                                         | Page        |
|---|---------------------------------------------------------|-------------|
| - | SUMMARY                                                 | i           |
| - | LIST OF SYMBOLS                                         | <b>11</b> i |
| _ | CHAPTER (1): PHYSICAL AND TECHNOLOGICAL CHARACTER-      |             |
|   | ISTICS OF MOST                                          | 1           |
|   | (1-1) Introduction                                      | 1           |
|   | (1-2) Ideal MOS Structure                               | 2           |
|   | (1-3) Ideal threshold voltage for MOS structure .       | 6           |
|   | (1-4) Actual MOS structure                              | 11          |
|   | (1-5) The effect of back gate bias on "V <sub>T</sub> " | 15          |
|   | (1-6) The MOST device equations                         | 15          |
|   | (1-6-1) The current voltage characteristics             |             |
|   | in the linear region                                    | 15          |
|   | (1-6-2) The current voltage characteristics             |             |
|   | in the saturation region                                | 22          |
|   | (1-6-3) The current voltage characteristics             |             |
|   | in the avalanch region                                  | 23          |
|   | (1-6-4) MOST as a four-terminal device                  | <b>2</b> 5  |
|   | (1-7) Factors affecting MOST operation                  | 26          |
|   | (1-7-1) Surface field dependance inversion              |             |
|   | layer mobility                                          | 27          |
|   | (1-7-2) Conductance in saturation                       | 28          |

|           |                                                  | Page |
|-----------|--------------------------------------------------|------|
|           | (1-7-3) Source and drain series                  |      |
|           | resistance                                       | 30   |
|           | (1-7-4) Temperature dependance                   | 30   |
|           | (1-8) The MOST Technologies                      | 30   |
| - CHAPTER | (2) : STATIC COMPUTER/CALCULATOR-AIDED           |      |
|           | DESIGN AND CHARACTERIZATION OF DIGITAL           |      |
|           | MOS INTEGRATED CIRCUITS                          | 48   |
|           | (2-1) Introduction                               | 48   |
|           | (2-2) DC circuit characterization                | 49   |
|           | (2-3) Numerical algorithm for the PELS inverter  | 51   |
|           | (2-3-1) Saturated driver-saturated load          | 51   |
|           | (2-3-2) Triode driver saturated load             | 57   |
|           | (2-4) Numerical algorithms for the PELT inverter | 59   |
|           | (2-5) Gate/Inverter equivalence                  | 61   |
|           | (2-6) Numerical algorithms for the CMOS inverter | 64   |
|           | (2-7) Computed transfer characteristics          | 72   |
|           | (2-8) Conclusion                                 | 79   |
| - CHAPTER | (3): TRANSIENT MACROMODEL FOR LSI STRUCTURS      | 81   |
|           | (3-1) Introduction                               | 81   |
|           | (3-2) Macromodel derivation                      | 82   |
|           | (3-2-1) Saturation mode of operation             | 85   |
|           | (3-2-2) Triode mode of operation                 | 88   |
|           | (3-2-3) Cutoff mode of operation                 | 90   |

|   |          |                                              | Page |
|---|----------|----------------------------------------------|------|
|   | (3-3)    | Testing the transient macromodels            | 93   |
|   | (3-4)    | Selection of the time step △t                | 95   |
| - | CHAPTER  | (4): A MACROMODELING APPROACH FOR CMOS/LSI   |      |
|   |          | DIGITAL STRUCTURE                            | 100  |
|   | (4-1)    | Introduction                                 | 100  |
|   | (4-2)    | MOST four terminal models                    | 101  |
|   |          | (4-2-1) n-channel MOST models                | 101  |
|   |          | (4-2-2) P-channel MOST models                | 1 02 |
|   | (4-3)    | Macromodel derivation                        | 103  |
|   | (4-4)    | Macromodel derivation for a square wave form | 117  |
|   | (4-5)    | Testing the macromodel                       | 125  |
|   | (4-6)    | Conclusion                                   | 127  |
| - | CHA PTER | (5): APPLICATION OF MACROMODELING            |      |
|   |          | TECHNIQUES                                   | 130  |
|   | (5-1)    | Introduction                                 | 130  |
|   | (5-2)    | Large system characterization technique      | 130  |
|   | (5-3)    | Master-slave flip-flop characterization      | 133  |
|   |          | (5-3-1) Static characterization of the J-K   |      |
|   |          | master-slave flip-flop                       | 134  |
|   |          | (5-3-2) Transient characterization of the    |      |
|   |          | J-K master slave flip-flop                   | 140  |
|   | (5-4)    | Conclusion                                   | 144  |
| - | CHAPTER  | (6): CONCLUSION                              | 146  |
|   |          | CES                                          | 148  |
| - | APPENDI  | X (1) P <sub>1</sub> (V) derivation          | 152  |
|   |          | X (2) P. (V) derivation                      | 158  |

### SUMMARY

The aim of the present work is to develop a macromodeling technique, which would describe an integrated
digital gate as an entity rather than a group of separate
devices. This approach is based on an analytical formulation of the input-output gate relationship. Hence
this technique is advantageous in the design and analysis of large scale integrated circuits (LSI).

Chapter (1) deals with the studying of electronic structures based upon the metal-oxide semiconductor technique. Also the related physical and technological bases were reviewed and discussed. This was essential to establish the necessary background required for the research.

Chapter (2) deals with the development of a computer calculator circuit simulation technique to obtain the dc characteristics of MOS digital integrated circuits. The computations of these dc characteristics were derived in terms of the device physical parameters which are extracted from processing data. The computed results were found to be concident with measurements in the literatures.

In chapter (3), a macromodeling of the transient response was derived analytically for the MOS digital

Central Library - Ain Shams University

gate. This was found to be more accurate, more generalized, and less complicated than the existing techniques. This macromodel was applied to an "FMGB-55" NOR gate, where the computed transient response was found to be in good agreement with published experimental results.

Chapter (4) contains the derivation of a mocromodeling of transient response for the complementary
metal-oxide semiconductor (CMOS) LSI. This is done for
the CMOS digital gate. The computed results using this
derived macromodel were compared with those using
"SCEPTRE" computer program and with published experiment
results were a good agreement is again found to be existing.

Chapter (5) explains a technique for the application of the already derived do and transient macromodels on a complex logic circuit. A master-slave flip flop is chosen as an example to verify this technique.

Finally, the conclusions of the whole study is presented in chapter (6).

### LIST OF SYMBOLS

C<sub>R</sub> Substrate impurity concentration

Cou The load capacitor

C Specific gate-oxide capacitance

dy Incremental distance along the channel

In Drain current

Ko Relative dielectric constant of oxide

K Relative dielectric constant of silicon

L Channel length

Ldep. Reduction in channel length in saturation

 $N_{A}$  P-type impurity concentration

 $N_{\mathrm{D}}$  N-type impurity concentration

 $\mathbf{Q}_{\mathbf{B}}$  Depletion charge at the onset of strong inversion per unit area

Q<sub>I</sub> Inversion charge per unit area

 $Q_{\mathbf{p}}(\mathbf{y})$  Coefficient used in the MOST four-terminal model derivation

$$Q_{p}(y) = -\left[V_{G} - V_{FB} - 2\phi_{f} - V(y)\right]C_{0}$$
$$-\left[2 K_{s} \epsilon_{o} q C_{B} \middle| V(y) + 2\phi_{f}\right]^{\frac{1}{2}}$$

Central Library - Ain Shams University

 $Q_{_{\mathbf{S}}}$  Total charge within the semiconductor per unit area

 $Q_{ss}$  Positive charges at Si - Si  $O_2$  interface

tox Gate-oxide thickness

V<sub>RC</sub> Back-gate substrate voltage

V<sub>D</sub> Drain voltage

V<sub>FBn</sub> Flat band voltage for n-channel MOST

V<sub>FBp</sub> Flat band voltage for p-channel MOST

V<sub>Dsat</sub> Drain saturation voltage

V<sub>C</sub> Gate voltage

V<sub>in</sub> Input voltage

V Output voltage

Vosn Output saturation voltage for n-channel MOST

Vosp Output saturation voltage for p-channel MOST

 $V_{ox}$  Voltage across the Si  $O_2$  (gate oxide)

V<sub>s</sub> Source voltage

 ${f v}_{{f T}_{{f O}}}$  Turn-on voltage

V(y) Potential along the channel

R<sub>s</sub> Parasitic drain and source series resistance

X<sub>0</sub> Thin-oxide thickness

X<sub>d</sub> Depletion layer width

Z Channel width

B Ratio of driver and load MOST's current factors

$$\beta = \frac{\mu_D (z/L)_D}{\mu_L (z/L)_T}$$

 $\mu_{\rm eff}$ . Effective mobility in the inversion layer

Pfp Fermi potential for p-type MOST

Work function difference between metal gate and semiconductor

Coefficient used in the I-V relationship

$$\oint_{0} = \frac{2 k_{B} e_{O} q c_{B}}{c_{O}^{2}}$$

\$\mathcal{P}\_{\times}\$ Coefficient used in the I-V relationship



Coefficient used in representing the saturation region

### CHAPTER (1)

PHYSICAL AND TECHNOLOGICAL CHARACTERISTICS

OF METAL-OXIDE SEMICONDUCTOR TRANSISTOR (MOST)

### (1-1) Introduction.

The MOST is the basic and unique cell used in MOS integrated circuits, which makes it possible to construct large scale integration (L SI). Thus in this chapter we are concerned with the physical and technological aspects of the MOST.

The analysis of MOST begins with the study of the semiconductor surface, this can be accomplished by studying the MOS (metal-oxide semiconductor) structure which is the basic inherent part of MOST.

MOS structure is studied first in section (1-2) in its ideal case, where the principale of operation is presented. The analysis of turn-on voltage in the ideal case is accomplished in section (1-3). Section (1-4) deals with the actual MOS structure contains many effects which make it not ideal. The back gate bias technique and its effect on the threshold voltage will be discussed in section (1-5), while in section (1-6) all the MOST equations will be derived. Section (1-7) will contains all the

factors which effect the MOST operation. At the end of the chapter, a brief note will be given on the different techniques used in MOST fabrication which will be included in section (1-8).

# (1-2) Ideal MOS structure [1, 2, 3].

Consider a p-channel MOST structure as shown in Fig. (1-1-a) where the work function between metal gate and silicon  $\mathcal{P}_{MS}$  = 0, charge in the gate oxide  $Q_{ox} = 0$ , and charge at the silicon-silicon dioxide interface  $Q_{ss} = 0$ . The energy - level structure for the device in the n-region under the gate oxide, with source, substrate, gate and drain grownded is shown in Fig. (1-1-b). The horizontal structure of the energy levels is referred to as the band condition. It is to be noted that the energy - level diagram is now two dimentional, with distance into silicon represented in the horizontal direction, and electron energy represented along the vertical direction. The on-state of the MOST is achieved by applying a gate voltage V<sub>C</sub> of proper polarity between the metal gate and the silicon substrate. An applied negative - gate voltage V<sub>C</sub> sets up on electric field which in turn bends the energy bands in the bulk silicon to the extent that Ei crosses Ef and the surface region becomes p-type