THEORETICAL AND EXPERIMENTAL EVALUATION
OF THE EFFECT OF THE PERCENTAGES
OF QUARRIES SURFACE MATERIALS
IN COARSE AGGREGATES
ON THE BEHAVIOUR OF ROAD TAR MIXTURES

aY

рà

MAGDY SALAH SAYED NOUR EL DIN B.Sc. (Honours), 1969

5383

Supervised by

Dr. M.A. El Hawary, Prof. of Railway and Transportation Engineering, Faculty of Engineering, Cairo University Dr. A.O. beel Samed.
Assoc. Prof. of Highest had airport for the same and t

A Thesis
submitted to
The Faculty of Engineering,
Ain Shams University

In partial fulfilment of the requirements for the Degree

Master of Science in Civil Engineering علیم براس ۱۹۷۲ ۱۷۱۱ه مرک

1977

TATLE OF CONTENTS

		Page
CHAPTER I - I	RTRODUCTICE	1
CHAPTER II - L	TTERATURE REVIEW	4
I	I-l Factors Affecting Rock Weathering	4
I	II-2 Identification of Weathered Rochs	7
I	II-3 Laboratory and Field Work on the Poor Quality Aggregates	11
CHAPTER III - S	SAMPLING AND MATERIALS	24
I	[II-] Crushed Basaltic Aggregates	24
1	III-2 Sand	3 0
1	III-3 Limestone Dust	33
3	III-4 Locally Produced RP-11 Grade	34
נ	III-5 Basalt Quarries Surface Materials	3 6
1	III-6 Comparison Between the Properties of Quarries Surface Materials and Fresh Basalt	40
CHAPTER IV - I	EXPERIMENTAL INVESTIGATION	47
:	IV-1 Scope of Investigation	47
:	IV-2 Programme of Testing	48

			Page
14-4	Pre irat	rion of lest S owens .	49
	17-3-1	Ins Angeles Jest Sections	49
	IV-p - 2	Marshall Test Specimens	50
IV-4	Testin γ	Apparatus	51
	11-4-1	Los Angeles Machine	51
	IN-/S	Marshall Terbing Machine	52
	14-4-3	Extraction Apparatus .	52
	IV-4-4	Apparatus for Mechani- cal Analysis of Extracted Apprenates .	52
IV- 5	resting	Procedure	53
	IV-5-1	Crushing Strength of Coarse Aggregates	53
	IV-5- 2	Bulk Density Determination	54
	IV-5-3	Stability and Flow Tests	5 5
	IV-5-4	Density and Voids Analysis	56
	IV-5-5	Interpretation of Test Data	57
	IV-5- 6	Extraction Test Procedure	59
	IV-5 - 7	Mechanical Analysis of	62

		Page
CHAPTER V - TEST	RESULTS AND DISCUSSIONS	65
V-1	Effect of Quarries Euricee Materials on the Crushin, Strength of Coarse Aggregates	65
V-2	Effect of Quarries Surface Materials on the Marshall Stability of Hot Mix Tar Concrete	67
V-3	Effect of Quarries Surface Materials on the Flow of Hot Mix Tar Concrete	69
V-4	Effect of Quarries Surface Materials on the Unit Weight of Hot Mix Tar Concrete	71
V- 5	Effect of Quarries Surface Materials on the Air Voids of Hot Mix Tar Concrete	73
V-6	Effect of Quarries Surface Materials on the Voids Filled with Tar in Hot Mix Tar Concrete.	75
V~7	Effect of Quarries Surface Materials on the Optimum Tar Content	77
v– 8	Effect of Quarries Surface Materials on the Change in the Design Grading of Hot Mix Tar Concrete	78
CHAPTER VI - CONCI	USIONS AND RECOMMENDATIONS	81
REFERENCES		85
APPENDIX I		88
APPENDIX II		93
FIGURES		105

LIST OF TABLES

		Page
TA-LE NO		
1	Chemical Composition of "Abu-Zambal" Ensalt	27
2	Grain Size Distribution for Pasaltic Aggregates (Grade 1)	28
3	Grain Size Distribution for Basaltic Aggregates (Grade 2)	28
4	Engineering Properties of the Coarse Basaltic Aggregates	29
5	Grain Size Distribution for Sand	31
6	Engineering Properties of Sand	32
7	Grain Size Listribution for Mineral Filler	34
8	Engineering Properties of Locally Produced RT-11 Grade	35
9	Chemical Composition of "Abu-Zaabal" Quarries Surface Materials	3 8
10	Engineering Properties of "Abu-Zaabal" Quarries Surface Materials	3 9
11	Comparison Between the Chemical Composition of the Fresh Basalt and Its Quarries Surface Materials	42
12	Comparison Between the Crushing Strength of the Fresh Basalt and Its Quarries Surface Materials	43
13	Comparison Between the Specific Gravity and Absorption of the Fresh Basalt and Its Quarries Surface Materials	44

		1511 Let
. Abb ^{Root}		
10	Companior Setween the Stricking Resistance of the Fresh Basalt and Isa Quarries Surface Materials	4 6
۱۲,	Greding of "bor Angeles" Test Uniple	42
1.5	Marshall Criteria Limits for Min Design .	58
17	Effect of Quarries Surface Naturals on the Crashin Strength of Coarse Aggregates for Wearing Surface	65
18	Effect of Quarries Surface Materials on the Stability of Hot Mix Tar Concrete	8ძ
19	Effect of Quarries Surface Materials on the Flow of Hot Mix Tar Concrete	70
20	Effect of Quarries Surface Materials on the Unit Weight of Hot Mix Tar Concrete .	72
21	Effect of Quarries Surface Materials on the Air Voids of Hot Mix Tar Concrete	74
22	Effect of Quarries Surface Materials on the Voids Filled with Tar in Hot Mix Tar Concrete	76
27	Effect of Quarries Surface Materials on the Optimum Tar Content	. 77
24	Effect of Quarries Surface Materials on the Change in the Design Gradin; of Hot Mix Tar Concrete	. 79
25	Sieve Analysis Test Results for Coarse Aggregates (Grade 1)	. 88
26	Sieve Analysis Test Results for Coarse	. 88

		Page
TABLE 12		
27	Sieve Analysis Test Results for Fine Augregates	8 9
28	Sieve Analysis Test Results for Mineral Filler	89
2)	Los Angeles Abrasion Test Results - Coarse Baseltic Aggregates	90
30	Determination of the Specific Gravity and Absorption for the Coarse Masaltic Aggregates	90
31	Determination of the Specific Gravity and Absorption for the Fine Aggregate	91
32	Determination of the Specific Gravity for the Mineral Filler	91
33	Los Angeles Abrasion Test Results - Rasalt Quarries Surface Materials	92
34	Determination of the Specific Gravity and Absorption for the Basalt Quarries Surface Materials	92
35	Ios Angeles Abrasion Test Results for Coarse Aggregate Blend Containing 10% Quarries Surface Materials by Weight	. 93
3 6	Los Angeles Abrasion Test Results for Coarse Aggregate Blend Containing 20% Quarries Surface Materials by Weight	. 93
37	Los Angeles Abrasion Test Results for Coarse Aggregate Blend Containing 30% Quarries Surface Materials by Weight	. 94
38	Los Angeles Abrasion Test Results for Coarse Aggregate Blend Containing 40% Quarries Surface Materials by Weight .	. 94

		V1.
TABLE	112	Page
3 9	Hot-Mix Design Data by the Marshall Method of Design at Zero % Quarties Surface Materials by Weight of Coarse Aggregates	95
40	Hot-Mix Detagn Data by the Marshall Method of Design at 10% Quarries Surface Materials by Weight of Coarse Aggregates	96
41	Hot-Mix Design Data by the Marshall Method of Design at 20% Quarries Surface Materials by Weight of Coarse Aggregates	97
42	Hot-Min Design Data by the Marshall Method of Design at 30% Quarries Surface Materials by Weight of Coarse Aggregates	98
43	Hot-Mix Design Data by the Marshall Method of Design at 40% Quarries Surface Materials by Weight of Coarse Aggregates	99
4 4	Extraction Test Results for Hot Tar Mixture Containing Zero % Quarries Surface Materials by Weight of Coarse Aggregates	100
4 5	Extraction Test Results for Hot Tar Mixture Containing 10% Quarries Surface Materials by Weight of Coarse Aggregates	100
46	Extraction Test Results for Not Tar Mixture Containing 20% Quarries Surface Materials by Weight of Coarse Aggregates	101
47	Extraction Test Results for Hot Tar Mixture Containing 30% Quarries Surface Materials by Weight of Coarse Aggregates	101

	0	Page
PABLE	 	
43	Extraction Test Results for Hot Tau Nixture Centeining 40% Quarries Eurface Enterials by Waight of Coarse Aggregates	102
49	Sieve Analysia Test Results for Extracted Timeral Aggregates Containing Zero & Quarries Surface Materials by Weight of Coarse Aggregates	102
50	Sieve Analysis Test Results for Extracted timeral Aggregates Consain-ing 10% Quarries Surface Materials by Weight of Course Aggregates	103
51	Sieve Analysis Test Results for Extracted Timeral Aggregates Contain-ing 20% Querties Surface Materials by Weight of Coarse Aggregates	103
5 2	Sieve Analysis Test Results for Extracted Mineral Aggregates Contain- ing 30% Quarries Surface Materials by Weight of Coarse Aggregates	104
53	Sieve Analysis Test Results for Extracted Mineral Ag regates Containing 40% Quarries Surface Materials by Weight of Coarse Aggregates	104

LIST OF FIGURES

FIGURE	и о	Page
1	Grain Size Distribution for Coarse Aggregates	105
2	Grain Size Distribution for Fine Aggregate	106
3	Grain Size Distribution for Mineral Filler	107
4	Design Grading of the Combined Aggre-	108
5	Effect of Quarries Surface Maverials on the Crushing Strength of Coarse Aggregates	109
6	Test Property Curves for Hot-Mix Design Data by the Marshall Method at Zero Percent Quarries Surface Materials	110
7	Test Property Curves for Hot-Mix Design Data by the Marshall Method at 10 Percent Quarries Surface Materials	111
8	Test Property Curves for Hot-Mix Design Data by the Marshall Method at 20 Percent Quarries Surface Materials	112
9	Test Property Curves for Hot-Mix Design Data by the Marshall Method at 30 Percent Quarries Surface Materials	113
10	Test Property Curves for Hot-Mix Design Data by the Marshall Method at 40 Percent Quarries Surface Materials	114
11	Marshall Stability Versus Tar Content for Different Percentages of Quarries Surface Materials	115

klunds no		Page
12	Effect of Quar.ies Surface Materials on the Ma. d. N. Stability of Hol-Mix Tar Concrete	116
13	Flow Versus Tar Concent for Different Percentages of Quarries Surface Materials	117
14	Effect of Quarries Surface Materials on the Flow of Hot-Nix Tar Concrete	118
15	Unit Weight Versus Tar Content for Different Percentages of Quarries Surface Materials	119
16	Effect of Quarries Surface Materials on the Unit Weight of Hot-Mix Tar Concrete	120
17	Air Voids in Total Mixture Versus Tar Content for Different Percentages of Quarries Surface Materials	121
13	Effect of Quarries Surface Materials on the Percentage of Air Voids in Total Mixture of Hot-Mix Tar Concrete.	122
19	Voids Filled with Tar Versus Tar Content for Different Percentages of Quarries Surface Materials	123
20	Effect of Quarries Surface Materials on the Voids Filled with Tar in Hot-Mix Tar Concrete	124
21	Effect of Quarries Surface Materials on the Aggregate Gradation	125

ACKNOWLEDGEMENTS

The author wishes to express his deep gratitude to Prof. Dr. M.A. El-Hawary, Professor of Rail-ways and Transportation Engineering, Faculty of Engineering, Cairo University, for his supervision and assistance during this work.

Special acknowledgement is extended to Dr. A. Osman Abdel-Samed, Assoc. Professor of Highway and Airport Engineering, Faculty of Engineering, Cairo University, for suggesting the topic of research. His constant inspiration and frequent advice contributed much toward the completion of this thesis. The author is most indebted to him.

The author is also grateful to Dr.M.S. El-Hawary, Lecturer of Highway Engineering, Faculty of Engineering, Ain Shams University, for his constructive guidance and unfailing encouragement.

Sincere appreciation is also extended to the Director and staff of the Central Laboratories, Road Training Centre at Cairo, for their cooperation during the experimental phase of the research work.

The helpful suggestions of all those who have in one way or another contributed to the successful achievement of this thesis, are gratefully acknowledged.

CHAPTER I

INTRODUCTION

The performance of bituminous concrete pavement depends largely on the properties of mineral aggregates which are commonly composed of coarse aggregate, fine aggregate, and mineral filler. Mineral aggregates vary widely in their mineralogical, granulometric, strength surface texture, and shape characteristics. These properties are usually evaluated to determine the suitability of mineral aggregates for use in bituminous mixtures.

One of the major sources of road making aggregates is the crushed rock aggregate which is prepared by quarrying natural rock from quarries having materials of acceptable properties and crushing it to the required size.

In the majority of these quarries, the fresh rock is capped by an overburden of partially decomposed rock. In addition, decomposition may penetrate into cracks and joints in sound rock, which may also be traversed by veins of rock of inferior quality. Decomposed or inferior rock may find its way into the crushers, which cannot be easily eliminated.

In Egypt, "Abu-Zaabal" basaltic quarries are extensively used in attaining coarse basaltic aggregates for road construction. Decomposed quarries surface materials were found with fresh basalt after the crushing operations. The properties of these decomposed materials, as well as their effect on engineering properties of hot bituminous mixtures, were not clearly evaluated and fully understood.

This research has been initiated, first, to determine the different properties of the decomposed quarries surface materials and, secondly, to evaluate their effect on the engineering properties of hot road tar mixtures.

The study covers a review of the available related literature. Experimental work has been conducted to determine the different properties of the quarries surface materials.

The mineralogical and chemical composition of the quarries surface materials have been studied.

The specific gravity, water absorption, and stripping resistance of the quarries surface materials have been determined.