

Ain Shams University

Faculty of Engineering

Electronics and communication Engineering Department

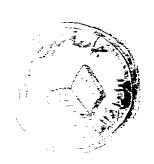
Synthesis of Arabic Speech Signals

A Thesis submitted in partial fulfillment of the requirements of the M.Sc. degree in the Electrical Engineering

621.3828 S.M (Communications)

Ву

Eng. Sammar Mohamed Elsayed Soliman


Eng. General Organization of Educational Buildings

68 B36

Supervised by:
Prof. Dr. Salwa H. El-Ramly
Ain Shams University

Dr. Nemat Sayed Abd El-Kader Cairo University

Cairo-1997

ACKNOWLEDGMENT

The author wishes to acknowledge the sincere effort and continual guidance of her supervisor **Prof. Dr.: Salwa Hussein El-Ramly.** Without her scientific assistance and precious suggestions the thesis would not have that reach

The author also wishes to express her sincere gratitude to **Dr.**: **Nemat Sayed Abd El-kader** for helping in deciding the subject of the research, defining the problem, useful suggestions, technical support, and continual follow-up during the research

The author wishes to thank the Department of Electronics and Communications Engineering, Faculty of Engineering, Ain Shams University.

Furthermore, the author wishes to thank the General Organization of Educational Buildings. Nasr City.

Statement

This dissertation is submitted to Ain Shams University for the M.Sc. degree in Electrical Engineering (Communications Engineering).

The work included in this thesis was carried out by the author at the Electronics and Communications Engineering Department. Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at any other university or institute

Date:

Signature

Name, Sammar Mohamed Elsayed Soliman

EXAMINERS COMMITTEE

Name, Title & Affiliation:

Signature

S. M. Survey

Silver O Rowing

- 1- Prof. Dr. Safwat Mahrous Mahmoud Electronics & communication Eng. Dept. Ain Shams University.
- 2- Prof. Dr. Salwa Hussein El- Ramly Electronics & communication Eng. Dept. Ain Shams University.

3- Prof. Dr. Mohamed Yones Abd El-Samee Elhamalawy ----------Computers and system Engineering Dept. Elazhar University.

Date: 199*

ABSTRACT

Sammar Mohamed Elsayed Soliman, Synthesis of Arabic Speech Signals, Master Degree, Electronics and Communications Engineering Department, Faculty of Engineering, Ain Shams University, 1997.

Using computers in many fields of our daily life requires direct and easy method for dealing with it Direct communication with computers by text or speech is still the greatest aim of researchers in this field.

During the last twenty years, researchers have developed many techniques to produce computerised speech, requiring relatively small data storage requirements and offering excellent capability for concatenation of phrases

Electronic speech synthesis aims to cover convisely but completely all fundamental subject matter which is useful either for research or for the design of steaking systems

Although many text-to-speech systems are commercially available today for a number of languages. (English, French, German, Japanese, etc), marabic language few research works have been done Recently, there is a growing interest among computer scientists to develop Arabic text-to speech systems and to synthesize naturally sounding Arabic.

This thesis aims to build a software formant synthesizer that is suitable for the nature of the Arabic language (in spite of its simulation complexity) and using this synthesizer to construct an inventory of the basic Arabic speech units with all phonetic variants of these synthesis units that can be used as a first step of an Arabic text-to-speech system. A comparative study between different basic units is made and then the allophones are chosen as the basic units.

The implemented synthesizer consists of two main steps, extraction of the analysis parameters for each allophone (analysis phase), and the speech reproduction (synthesis phase).

In the analysis phase each allophone is extracted from a set of natural Arabic words containing this allophone in the same place or in various places and then analysed to extract its features (pitch, first four formants, first four bandwidths, voiced/unvoiced classification). A new set of parameters will be stored every 20 ms on the PC hard disk.

Storing these parameters instead of the speech signal itself reduces the required memory storage for the constructed data base.

In the synthesis phase, the files which contain the desired parameters of a new word or utterance, are called and concatenated in a new file that activates the synthesizer to produce the output speech.

Experimental results indicate good output speech quality due to good implementation of the synthesizer and careful choice of the phonetic units. Using the constructed data base with a suitable interpolation method the output speech will be improved.

Contents

ABSTRACT	V
LIST OF FIGURES	XI.
LIST OF TABLES	XIV
LIST OF ABBREVIATIONS	TX
CHAPTER 1: SPEECH SIGNAL ANALYSIS	1
1.1 Introduction	1
1.2 Mechanism of speech production	3
1.3 Characteristics of speech waveform	5
1.3.1 Probability density functions (pdf)	8
1.3.2 Nonstationarity of speech signals	10
1.3.3 Autocorrelation functions (acr)	ΙC
1.3.4 Power spectral density functions (psd)	12
1.4 Speech signal analysis	13
1.4.1 Time-domain processing for speech signal	16
1.4.1.1 Short-time energy and average	
magnitude	17
1.4.1.2 Short-time average zero crossing	
rate (ZCR)	18
1.4.1.3 Voiced-Unvoiced classification	19
1.4.1.4 Short-time Autocorrelation function	
(acf)	21
1.4.2 Frequency-domain processing for speech	
sional	٦,

1.4.2.1 Linear predictive coding (LPC)	22
1.5 Fundamental frequency estimation.	27
1.5.1 Time-domain pitch detection algorithms	
(PDAs).	28
1.5.2 Spectral domain techniques	29
1.5.2.1 The cepstrum technique	29
1.5.2.2.Methods using modified	
autocorrelation	31
1.6 Formant estimation	36
1.6.1 Formant estimation from cepstrum	37
1.6.2 LPC-Based estimation	37
1.6.2.1 Peak picking technique	38
1.6.2.2 Root finding technique	39
1.7 Conclusion	43
CHAPTER 2: SPEECH SYNTHESIZERS	44
2.1 Introduction	44
2.2 Speech synthesis techniques	45
2.2.1 Synthesis by direct concatenation	45
2.2.2 Synthesis through a model	47
2.2.2.1 Formant synthesizer	47
2.2.2.2 LPC synthesizer	51
2.2.2.3 CELP synthesizer	52
2.2.3 Vocal tract simulation (Articulatory	
synthesis)	54
2.3 Comparison between synthesis techniques	56

2.4 Conclusion	59
CHAPTER 3: KLATT SYNTHESIZER	50
3.1 Introduction	50
3.2 Cascade/parallel formant synthesizer	6]
3.2.1 Cascade versus parallel	51
3,2,2 Waveform sampling rate	56
3.2.3 Parameter update rate	5 6
3.3 Digital resonator	55
3.4 Digital antiresonator	59
3.5 Low-pass filter	59
3.6 Synthesizer block diagram	70
3.6.1 Sources of sound	70
3.6.1.1 Voicing source	- 1
3.6.1.2 Normal voicing	73
3.6.1.3 Quasi-sinusoidal voicing	73
3.6.1.4 Frication source	75
3.6.1.5 Aspiration source	76
3.6.2 Vocal tract transfer function	76
3.6.2.1 Cascade vocal tract model	77
3.6.2.2 Parailel vocal tract model	80
3.6.3 Radiation characteristic.	81
3.7 Synthesis strategy	81
3.8 Conclusion	84
CHAPTER 4: IMPLEMENTED SYNTHESIZER	85
4.1 Introduction	85

4.2 Analysis stage	85
4.3 Synthesis stage	86
4.3.1 Voicing source	90
4.3.2 Noise source	91
4.3.3 Cascade synthesizer	92
4.3.4 Parallel /cascade synthesizer	93
4.3.5 Output stage	94
4.4 Evaluation of the synthesizer quality	94
4.4.1 Objective measurements	94
4.4.1.1 Signal-to-noise ratio, SNR	95
4.4.1.2 Segmental signal-to-noise ratio,	
SNRSEG	95
4.4.1.3 SNRMAX, SNRMIN	96
4.4.1.4 Signal-to-uncorrelated noise ratio,	
SNRu	97
4.4.2 Subjective measurement	98
4.4.2.1 Quality measurements	99
4.4.2.2 Intelligibility tests	101
4.5 Experimenati results	103
4.6 Comparison between the implemented	
synthesizer and the Klatt synthesizer	108
4.7 Conclusion	109
CHAPTER 5: CONSTRUCTION OF AN	
ARABIC DATA BASE	110
5.1 Introduction	110

5.2 Arabic Allophones	110
5.3 Choice of phonetic units	111
5.3.1 Phonemes	113
5.3.2 Allophones	114
5.3.3 Diphones	116
5.3.4 Syllables	117
5.3.5 Demisyllables	118
5.4 Why using allophones	120
5.5 Construction of the Arabic speech data	
base	121
5.6 Conclusion	131
CHAPTER 6:CONCLUSION AND FUTURE	
WORK	133
REFERENCES	136

-XI-

List of Figures

Figure	page
1.1 Speech production mode.	5
1.2 Amplitude waveforms of speech	-
1.3 Typical long-time averaged propability censity	
functions for speech amplitudes	Ü
1.4 The dependence of shurt-term speech variance	- •
1.5 Long-time averaged auto correlation function	
1.6 Short-time power spectral density for vicioed and	
unvoiced speech segments	1,5
1.7 Block diagram of the SIFT algorithm	33
2.1 Speech synthesis model	45
2.2 Formant synthesizer	50
2.3 Parallel bascade formant synthesizer	57
2.4 Block diagram of LPC synthesizer	53
3.1 Relation of the software synthesizer to the hardware	52
3.2 The transfer function of the wood tract simulated by	
paspade on parallel digital resonators	ś 4
3/3 The different configurations of the formant symmetres	p5
3 4 Digital resonator	5Š
3.5 Blook diagram of the cascade parallel formant	
symthesizer	72
3.6 Voicing source amplitude spectra of normal and quasi-	
sinusoidal voicing	:
4.1 Analysis stage flow chart	<u>-3</u>

4.2 Flow chart of the cascade synthesis stage	88
4.3 Flow chart of the parallel/cascade synthesis stage	89
4.4 Speech intelligibilty versus articulation index	102
4.5 Waveforms of the natural and the synthetic word "کے"	106
4.6 Waveforms of the natural and the synthetic sentence	
	107
5.1 Waveform of allphone (4)	124
5.2 Waveforms of the natural and the synthetic word ""	
5.3 Pitch contours of some natural and the synthetic Arabic	129
utterances	
	130

-XIV-

List of Tables

Table	page
2.1 Principle features of speech synthesis techniques	58
3.1 List of control parameters for the software formant	
synthesizer	83
4.1 List of control parameters for the implemented software	
formant synthesizer	à.
4.2 Five-point adjectival scales for quality and impairment, and	
associated number scores	100
4.3 MOS for the the utterance "نصم شرجي عرجي رجية"	104
"ابحل الصلام بعد عروب الشنسية" 4.4 MOS for the the utterance	104
4.5 MOS for the the utterance "Same"	104
4.6 MOS for the the utterance "-="	105
4.7 Parameter values of the selected English vowels	108
5.1 List of the Arabic consonant phonemes	::2
5.2 Comparison between the different speech synthesis units	119
5.3 Control parameters of ailophone (2)	125
5.4 Phonetic symboles of the implemented database	107