Factors Affecting The Resistance To Deformation On Metal Forming Processes

190

3,6

attall

Eheoio

Submitted to

Faculty of Engineering

Ain Shamo University

In the Partial fulfilment for the degree of Master of Science

in

Mechanical Engineering
(Metal Forming)

 $\mathfrak{B}_{\mathsf{y}}$

Mohamed Youssef Beshir

B. Sc. Mechanical Engineering, Production

Engineering Section

Ain Shamo University, 1968

المسالني

M. SC. THESIS

"FACTORS AFFECTING THE RESISTANCE TO DEFORMATION IN METAL FORMING PROCESSES"

EX AMINERS	SIGNATURE	DATE
Prof. Dr. Salah El-Din Bayowa	a	* * * 4 # * *
Dr. Aly Helmy El-Said	Jali Helm	•••••
Dr. Mahmand Mahamed Farag	14	

ACKNOWLEDGEMENT

The Author wishes to express his sincere gratitude to Dr. M. K. Abdel Aziz, Professor of Production Engineering, Faculty of Engineering, Ain Shams University, for his encouragement and kindness.

Deepest gratitude and all thanks presented to Dr. Mahmoud M. Farag, Asst. Professor of Production Engineering, Ain Shams University, for his valuable help, advice and supervision throughout the whole course of this work.

To all my Colleagues, I aslo submit my gratitude for their encouragement during the entire work.

CONTENTS

CHAPTI	IR	PAGE
	SUMMARY	
	INTRODUCTION	1
1-	REVIEW OF LITERATURE	3
	1.1-Methods of determining the plastic	
	behaviour of metals	3
	1.2-Solution of the plane - strain compression	
	problem	6
	1.3-Simulation of the rolling process by	
	plane compression test.	12
	1.4-Geometry parameters of deformed slab	14
	1.5-Effect of different parameters on the	
	resistance to deformation under plane	
	strain compression	15
2-	EXPERIMENTAL TECHNIQUE	23
	2.1-Apparatus	23
	2.1:1-Introduction	23
	2.1.2-Construction of the Cam-Plastometer	23
	2.1.3-Measurement of Load	24
	2.1.4-Design of Cams	24
	Design of Constant strain rate cams,	
	strain rate and mean strain rate of	
	rolling process, design of variable strain	
	rate cams.	
	2.2-Specification and preparation of test	
	pieces	29
	2.2.2-Preparation of specimens	29
	2.3-Experimental procedure	29

CHAPTER	CONTENTS Cont'd	PAGE
2 A.Chaiga	of variables	70
·		30
2.5-Data Col	Liection	31
3- EXPERIM	ENTAL RESULTS AND DISCUSSION	33
3.1-Introduc	etion	33
3.2-Fectors	affecting the geometry of the	
	ece under plane strain conditions	34
3.2.1-Introduc		34
3.2.2-Effect		34 ⁸
3.2.3-Effect	of temperature	34 ^a
3.2.4-Effect	of strain rate	35
3.2.5-Effect	of the type of loading	36
3.2.6-Effect	of material	36
3.3-True str	ess - true strain diagrams	37
3.4-Effect	of strain rate on the resistance	
to defor	mation	3 8
3.5-Effect	of temperature on the resistance	
to defor	mation	40
3.6-Combined	effect of strain rate and	
temperat	cure on the resistance to deformation	141
3.7-Effect of	of the method of loading on the	
resister	ce to deformation	43
4- CONCLUSI	ons	45
REFERENC	ES	
TABLES A	ND FIGURES	
ARABIC S	UMMARY	

III

LIST OF FIGURES

Figure

1-	Schematic diagram of the changes in shape
	during plane strain compression
2-	Uniform state of stress assumed in the slab
	method of analysis
3-	Yield stress curve for rolled strip of various
	thickness.
4-	Compressed specimens
5	Profile of the deformed slab
6-	Stress - strain curves for aluminium determined at
	various temperatures in a cam-plastometer giving a
	strain rate of 4.38/sec.
7-	Effect of strain rate on the tensile strength of
	copper at various temperatures.
8-	Changes in Engineering stress-strain curves of
	mild steel with temperature
9-	Variation of tensile properties of steel with
	temperature
10-	The Cam-Plastometer
11-	The dies
12-	Cam - Plastometer
13-	Diagram showing the arrangement of the strain guages
	on a load meter and Wheatstone Bridge
14-	Calibration curve
15-	Block diagram for the connections used
16-	Photograph for the different instruments
17-	Cam's lift.
18-	Variation of thickness in rolling process

Figure

19-	Effect of percentage reduction on maximum amount
	of bulge at room temperature - Pure Al. for $\hat{\epsilon}=1.25$
	and 15.3 sec1
20	Effect of percentage reduction on maximum amount
	of bulge at room temperature - Al Mg. 1% for
	ℓ = 1.25 and 15.3 sec ⁻¹
21	Effect of percentage reduction on coefficient of
	side way spread at room temperature - Pure Al. for
	$\dot{\epsilon} = 1.25 \text{ and } 15.3 \text{ sec.}^{-1}$
22	Effect of percentage reduction on coefficient of
	side way spread at room temperature - Al Mg. 1%
	for $\dot{E} = 1.25$ and 15.3 sec. $^{-1}$
23	Effect of temperature on maximum amount of bulge
	- Pure Al. for reduction 75% and E = 15.3 sec.
24	Effect of temperature on maximum amount of bulge
	- Al Mg. 1% for reduction 75% and $\dot{\epsilon}$ = 15.3 sec1
25	Effect of temperature on coefficient of side way
	spread - Pure Al. for reduction 75% and $\dot{\xi} = 15.3$ sec.
26	Effect of temperature on coefficient of side way
	spread - Al Mg. 1% for reduction 75% and $\hat{\epsilon}$ =15.3
	sec1
27	Effect of strain rate on maximum amount of bulge -
	Pure Al. for reduction 75%
28	Effect of strain rate on maximum amount of bulge -
	Al Mg. 1% for reduction, 75%
29	Effect of strain rate on coefficient of side way
	spread - Pure Al. for reduction 75%
30	Effect of strain rate on coefficient of side way
	spread - Al Mg. 1% for reduction 75%

Figure

31-	Effect of temperature on the stress-strain diagram
	- Pure Al. for constant strain rate and $\dot{\epsilon} = 1.25 \text{ sec.}^{-1}$
32-	Effect of temperature on the stress-strain diagram -
	Pure Al. for constant strain rate and $\dot{\epsilon} = 15.3$ sec. $^{-1}$
33-	Effect of temperature on the stress-strain diagram -
	Pure Al. for variable strain rate and $\dot{\epsilon}$ = 1.25 sec.
34-	Effect of temperature on the stress-strain diagram -
	Al Mg. 1% for constant strain rate and $\dot{\epsilon}$ = 1.25 sec.
3 5-	Effect of temperature on the stress-strain diagram -
	Al Mg. 1% for constant strain rate and $\dot{\epsilon}$ = 15.3 sec.
36 -	Effect of temperature on the stress-strain diagram -
	Al Mg. 1% for variable strain rate and $\dot{\mathcal{E}} = 1.25 \text{ sec}^{-1}$
37-	Effect of strain rate on the resistance to deformation -
	Pure Al. for constant strain rate and room temperature.
38-	Effect of strain rate on the resistance to deformation -
	Pure Al. for constant strain rate and 450°C.
39-	Effect of strain rate on the resistance to deformation -
	Al Mg. 1% for constant strain rate and room temperature
40-	Effect of strain rate on the resistance to deformation -
	Al Mg. 1% for constant strain rate and 450 $^{\circ}\mathrm{C}$
41-	Effect of strain rate on the resistance to deformation -
	Pure Al. for variable strain rate and room temperature.
42 -	Effect of strain rate on the resistance to deformation -
	Pure Al. for veriable strain rate and 450 ℃
43	Effect of strain rate on the resistance to deformation -
	Al Mg. 1% for variable strain rate and room temperature
44-	Effect of strain rate on the resistance to deformation -
	Al Mg. 1% for variable strain rate and room temperature

Figure

45-	Effect of constant strain rate on the resistance
	to deformation at 25% reduction - Pure Al.
46-	Effect of constant strain rate on the resistance
	to deformation at 50% reduction - Pure Al.
47-	Effect of constant strain rate on the resistance
	to deformation at 75% reduction - Pure Al.
48-	Effect of constant strain rate on the resistance
	to deformation at 90% reduction - Pure Al.
49-	Effect of constant strain rate on the resistance
	to deformation at 25% reduction - Al Mg. 1%
50 -	Effect of constant strain rate on the resistance
	to deformation at 50% reduction - Al Mg. 1%
51-	Effect of constant strain rate on the resistance
	to deformation at 75% reduction - Al Mg. 1%
52 -	Effect of constant strain rate on the resistance
	to deformation at 90% reduction - Al Mg. 1%
53 -	Effect of temperature on strain rate sensitivity
	- Pure Al. for constant &
54 -	Effect of temperature on strain rate sensitivity
	- Al Mg. 1% for constant É
55-	Effect of strain on strain rate sensitivity -
	Pure Al. for constant È
56 -	Effect of strain on strain rate sensitivity -
	Al Mg. 1% for constant È
57 -	Effect of temperature on the resistance to defor

mation - Pure Al. for constant strain rate and $\dot{E} = 1.25 \text{ sec}^{-1}$

Figure	F	i	gu	r	e
--------	---	---	----	---	---

- Effect of temperature on the resistance to deformation Pure Al. for constant strain rate and $\dot{\epsilon} = 15.3 \text{ sec.}^{-1}$
- Effect of temperature on the resistance to deformation Al. Mg. 1% for constant strain rate and $\dot{\varepsilon} = 1.25 \text{ sec}^{-1}$
- 60- Effect of temperature on the resistance to deformation Al. Mg. 1% for constant strain rate and $\dot{\mathcal{E}}=15.3~{\rm sec.}^{-1}$
- 61- Effect of temperature on the resistance to deformation Pure Al. for variable strain rate and $\dot{\varepsilon} = 1.25 \text{ sec.}^{-1}$
- 62- Effect of strain rate on the resistance to deformation Al. Mg. 1% for variable strain rate and $\dot{\mathcal{E}} = 1.25 \text{ sec.}^{-1}$
- 63- Effect of the resistance to deformation on the strain rate Pure Al.
- 64- Effect of the resistance to deformation on the strain rate Al. Mg. 1%
- 65- Effect of the resistance to deformation on the Zener Hollomon parameter Pure Al. and Al. Mg. 1%

VIII

LIST OF TABLES

Table

1-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 25% - Pure Al.
2-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 50% - Pure Al.
3-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 75% - Pure Al.
4-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 90% - Pure Al.
5-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 25% - Al Mg. 1%
6-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 50% - Al Ag. 1%
7-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 75% - Al Mg. 1%
8-	Effect of strain rate and type of loading on the
	maximum amount of bulge and the coefficient of
	side way spread for reduction 90% - Al Mg. 1%

Table LIST OF TABLES Contid

- 9- Effect of temperature and type of loading on the maximum amount of bulge and the coefficient of side way spread for reduction 75% and strain rate = 15.3 sec. -1 Pure Al.
- 10- Effect of temperature and type of loading on the maximum amount of bulge and the coefficient of side way spread for reduction 75% and strain rate = 15.3 sec⁻¹ Al. Mg. 1%
- 12- Effect of strains, strain rates and temperatures on the average force (P) using variable strain rate cams Pure Al.
- 13- Effect of strains, strain rates and temperatures on the average force (P) using constant strain rate cams Al. Mg. 1%
- 14- Effect of strains, strain rates and temperatures on the average force (P) using variable strain rate cams Al. Mg. 1%
- Effect of strains, strain rates and temperatures on the flow stress (δ) using constant strain rate cams
 Pure Al.
- Effect of strains, strain rates and temperatures on the flow stress (δ) using variable strain rate cams
 Pure Al.
- 17- Effect of strains, strain rates and temperatures on the flow stress (δ) using constant strain rate cams Al. Mg. 1%

Table LIST OF TABLES Cont'd

- 18- Effect of strains, strain rates and temperatures on the flow stress (5) using variable strain rate cams Al. Mg. 1%
- Values of the index(m) in Equation $6 = c \cdot \dot{\epsilon}^{m}$ at different conditions of deformation Pure Al.
- Values of the index(m)in Equation $\delta = \mathbf{c} \cdot \hat{\epsilon}^{m}$ at different conditions of deformation Al. Mg.1%
- Values of C at different conditions of deformation Pure Al.
- Values of C at different conditions of deformation Al. Mg. 1%
- Variation of (m_0) and (n) with temperature Pure Al.
- 24- Variation of (mo) and (n) with temperature Al. Mg.1%

S U M M A R Y

The present investigation aims at studying the factors affecting the behaviour of the metal under plastic deformation conditions especially those of the rolling process.

A comprehensive review of the relevant published literature was carried out with special reference to the Aluminium & Aluminium alloys. Also some of the theoretical and emperical approaches to the plane strain compression problem have been discussed.

In carrying out the experiments a cam - plastometer was used to give strain rates varying from 1 to 30 / sec. which would cover the practical strain rates used in industry. Two types of cams were employed to give either constant strain rate or variable strain rate similar to that encountered in rolling (starting at a maximum and ending with zero strain rate). The plane compression forces and geometrical behaviour of the deformed zone were studied under different conditions of strains and strain rates as well as different deformation temperatures. The material used was wrought aluminium of commercial purity and aluminium magnesium 1% alloy.

The experimental results and the discussions in the present work led to the following conclusions:

1- The maximum amount of bulge and the coefficient of side way spread decrease as the resistance to deformation of the material increases.