MONITORING OF CARDIAC FUNCTION UNDER ANAESTHESIA

ESSAY

Submitted in Partial Fulfillment for the M.S. Degree in Anaesthesia

By Bahaa Basyouni Basyouni M.B., B. Ch.

Supervised by

Prof. Dr Medhat Mohammed Younis

Prof . of Anaesthesiology and Intensive Care Faculty of Medicine Ain Shams University 5~~ 59

Prof. Dr. Mohammed Ahmed A. Zaghloul

Ass. Prof. of Anaesthesiology and intensive care

614.967 412 R R Faculty of Medicine Ain Shams University

Dr. Mervat Mohammed Marzouk

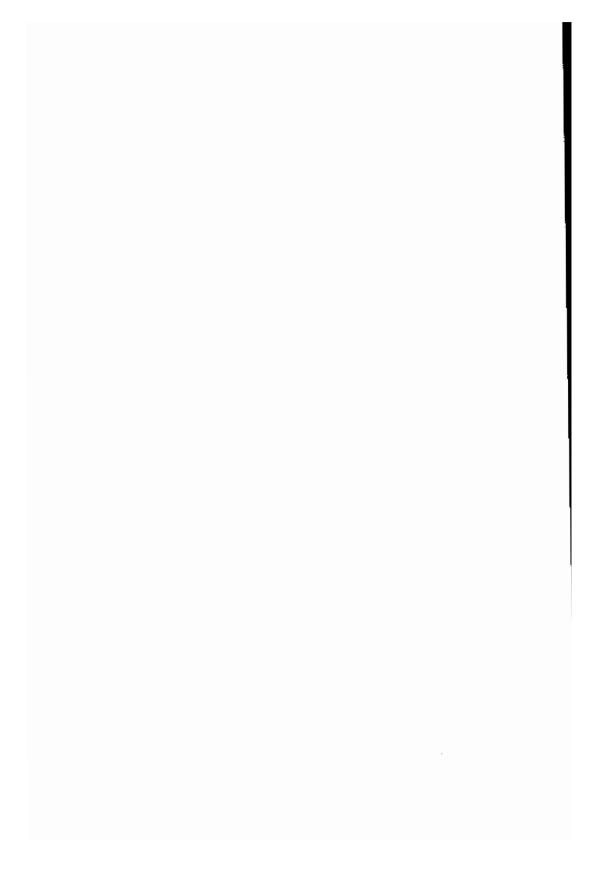
Lecturer of Anaesthesiology and Intensive Care Faculty of Medicine

Ain Shams University

1997

r		•	
			,

صرق (للهُ العظيم


ACKNOWLEGMENT

I wish to experss my sincere gratitude to **Prof Dr. Medhat Mohammed Younis**, Prof. of Anaesthesiology and Intensive Care,
Ain Shams University, for his great help and supervision.

I would like to express great appreciation to **Prof. Dr.**Mohammed Ahmed A. Zaghloul, Ass. Prof. of Anaesthesiology and Intensive Care, Ain Shams University, for his keen supervision.

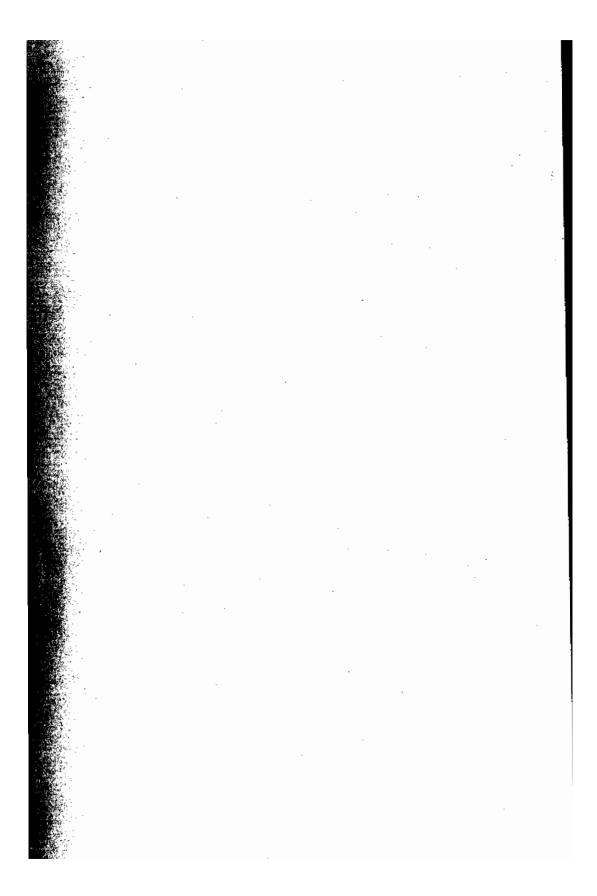
I also like to express my deepest gratitude to **Dr. Mervat**Mohammed Marzouk, Lecturer of Anaesthesiology and Itensive
Care, Ain Shams University, for her beneficial advices and
continuous encouragement.

My thanks go also to my dear wife who has been so patient and supportive from the begining to the final completion of this work.

CONTENTS

	Page
Introduction	1
Physiological consideration	2
E.C.G 8 Heart Rate Monitoring	13
Indirect Blood Pressure Monitoring	31
Non-Invasive Cardiac Output Monitoring	42
Direct Blood Pressure Monitoring	53
Cardiac Filling pressure Monitoring	63
Invasive Cardiac Output Monitoring.	86
Summary	91
References.	93
Arabic Summary	109

LIST OF TABLES


		Page
1-	Normal pressures in the cordiovascular system of recumbent adult	. 12
2-	The indications for use of PAC In patients undergoing cardiac and non-cardiac surgery	. 75
3-	The Complications of PAC	84

LIST OF FIGURES

1-	Action potential of a cell of the cardiac conducting system	3
2-	Events of cardiac cycle	7
3-	The Normal E.C.G. waves in different leads	18
4-	Some types of dysrhythmias which might be seen intraoperatively.	24
5-	The Von Recklinghausen Oscilltonometer	39
6-	Invasive arterial pressure recording system	54
7-	Strain gauge pressure transducer	55
8-	Insertion site for the internal jngular veinipuncture	65
9-	Central venous pressure waves with their relation to ECG and arterial pressure waveform	70
10-	Pressure waveform in relation to catheter position from PA to PCWP	77
11-	Washout curve for a high and low cardiac	86

		,

INTRODUCTION

Introduction 1

INTRODUCTION

Monitoring enhance vigilance and patient safety during surgery and anesthesia.

Advances in microprocessor technology, digital display and computer have lead to development of more sophisticated instrument and methods of data procurement and display but the basic principles of monitoring remains unchanged.

Monitors measure the physiologic effects of surgery and medication and permit the early detection of adverse effects and lead to early treatment and improved outcome.

Routine monitors were selected based on minimal risk and potential for lifesaving information.

Monitors are also categorized as invasive and non-invasive. Invasive monitors penetrate skin or are inserted into a body orifice. Invasive monitors are associated with greater risk of physical injury and discomfort of patient while non-invasive are not. (Savino, 1995)