

DETERMINATION OF GLANDULAR ISSUE DEVELOPMENT IN THE UDDER OF BUFFALOES AND CATTLE

By
ZEINAB AHMED IBRAHIM SULTAN

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE

350

2664

Department of Animal Production
Faculty of Agriculture
Ain Shams University

1972

APPROVAL SHEET

Approved by:

Homen Sheld

Date / /1972.

**

ACKNOWLEDGEMENTS

My despest gratitude and appreciation is deserved to professor Dr. Ahmed S.El-Sheikh Chairman of the animal Prod. Dept., Al-Azhar University, for suggesting the topic, guiding and directing this dessertation. I have agreat pleasure to be working under his supervision.

The authors thanks are also due to Dr. Tadros Khalil Fahmy, head, Dairy Microbiology Res. Sec., Anim. Prod. Res. Inst., Ministry of Agric. for facilitating the use of his laboratory equipments.

The author also wishes to express her gratitude to Dr. S.O. Amin, Assistant Professor of Animal Physiology, Faculty of Agric., Ain Shams University for her advices and assistance in revising parts of this thesis. I am also indebted to Dr. L.H. Bedeir, Senior Res. Worker, Anim. Prod. Res. Inst., for her consultations in the statistical analysis.

Special appreciation is expressed to the Anim. Prod. Dept. in both Faculty of Agric., Ain Shams Univ. and Ministry of Agric. for the supply of experimental animals and the other facilities extended by them.

INTRODUCTION

The lowered productivity of the Egyptian bufclose, compared with Friesian cattle is a major
problem in raising buffaloes in Egypt. Since most
of the milk produced in A.R.E. is from buffaloes, it
see extremely important to investigate the reasons
whind this low milk yield of Egyptian buffaloes.

To my knowledge, there is no published inforation on the developmental characteristics of buffloe udder, and the trials carried on evoking udder
rowth in buffaloes by the use of sex hormones (E1heikh et al., 1967) were unsuccessful. It was,
herefore, a very interesting topic to investigate
and I was perticularly interested in comparing buffames with a quite sensitive animal to such hormone
reatments i.e. Friesian cattle in determining the
istological structure of the memmary glands of both
affaloes and cattle.

Methods of estimation of the secretory functning tissue in the memmary glands depend mostly on c aethods of determination i.e. the quantitative stological and the quantitative chemical determinions of both DNA and RNA contents in udder tissue. in the present work I will discuss only the quantitative histological architecture of udders of esitle and buffaloes. The differences between these
iwo species with respect to milk production and fat
percentage reflect major variations in the type and
nature of the secretory tissue in these two species.

In this investigation, I will try to clarify these differences between the udders of buffaloes and friesian cattle, that, may cause the differences in this production. The histological study, presented here, was done to describe the micro-structure archimature of the buffaloe udders and comparing it with that of Trissians. A quantitative estimation of the glandular tissue and its proportion to the udder components was also studied.

Further investigations on the chemical composition and the biochemical processes involved in milk synthetic within the secretory cells of the mannery clands are of great importance. The cell activity and the assumt and function of the nucleic acids should be considered.

..........

PART I

HISTOLOGICAL STUDY OF THE UDDER

REVIEW OF LITERATURE

Developmental changes of the Mannery Glands:

Schafer (1929) found that the mammary gland of the virgin memma composed of very few and small groups of diveoli, scattered in shundant thick connective tissue. In the case of pregnancy the gland ducts but out ertensively and the alveoli enlarged until the greater part of the connective tissue in the mammary region was permeated by them. The same author and many other investigators, Wallace (1953) in calves and lambs, Yamamato and Turner (1955) in heifers, Griffith and Turner (1959) in rate, Misons and Hikman (1959) in rate, Moon, Griffith, Turner, Powell and Mary (1959) in rats, Williams and Turner (1962) in heifers, Anderson and Turner (1962) in mice, Hindary and Turner (1963) in heifers, Bresciani (1968) in mouse, Sud, Tucker and Meites (1968) in heifers, Tucker (1969) in rats and Wiknem, (1969) in mice, proved that the growth of the duct system was caused by the action of oestrogen hormone. However. the development of alveoli was brought about by progestrone hormone. The same findings were confirmed by Maximow (1952) who found that, in the mature manus periodical changes took place in connection with the

sexual cycle of the overies and utersus. It is probable that the changes in the breast consist in hyperplasis and perhaps edems of the interstitial connective tissue; the claim that the ductule and acinar progravid changes in the endometrium is probably undoubtful.

The electron microscopical invistigation made by Waugh, Hoven and Van Der (1962) demonstrated that the fine structure of the resting and pregnant breaat in human was found to be similar to that reparted by other workers for mice, rate and cows.

Sabantsev and startsev (1954) found in purebred Siberian calves, siberian x simmental, corssbreds and the progeny of kostroma of on siterian x
simmental \$2, that differences in growth from birth
to twelve months old were significant and were confined to fat and connective tissue. The mammary
growth was intensive during the period between twelve and twenty months. This was due to the developmental changes of ducts and alveoli. They also found
that regular massage of the mammary gland during the
mammary period (12-20 months) doubled the size of the
pland and the increase was due to greater glandular

tissue and slveolar development and to less fat development.

The histological examination of developing calves aged between 3 and 8 months showed considerable variation between individuals in the glandular tissue (Resini 1961). There was some degree of differentiation even in the tissue of 3 months old calves.

The histological changes in the mannary gland of the som embryos were studied by Krok (1960). He showed that the glands were first noticable at 20 to 22 days and the teats at 22 to 30 days. At 90 days the ducts began to branch and terminal distensions were formed. He also mentioned that marked changes occurred in the histological structure of the gland during the transition from embryonic to post-embryonic stege and the development up to 7 months postpertum was rather slow consisting of proliferation and branching of milk ducts and the formation of alveoli. At twelve months old, he found that the secretory elements were still inadequately developed, the glands consisting chaifly of connective tissue and there were no symptoms of secretory activity.

between four and without (1961) found in gilts eged between four and eighteen months that the development trends of the mammary gland in gilts of four months old were continued in those of six months. At nine, twelve and eighteen months, the glands contained elveolar tissue at widely differing stages of development, even in gilts of the same stage. They added that the proportion of the gland connective bissue was higher in cross-bred than in purebred pigs. A slight increase of the same pattern observed in the slveoli. Adomiker and Glowishing (1967) reported that the marphological structure of the gland in hemaster, guines pig and ret were very similar.

Ahren, Mtienne and Monique (1957) studied the levelopment of the namery gland in normal and cascreted male rate at 21-29 days. In both groups the glands showed only restricted duct systems at 1-27 days and duct and bud development at 53-60 lays was still similar except that siveolar development was obvious in normal rate (at 64-92 and 96-115). Likewell the memory gland area seemed similar in look rosps, siveolar development was extensive in the castrated rate but was composed at and acare in the castrated rate but was composed.

of two or more layers in the normal three months old rats.

Meibenco (1960) observed varying degrees of activity in memmary glands of untreated female rats of 350 to 950 days of age. Older animals have enlargements along the breast lines, which contained milk-like fluids. He also declared that secretion was associated with ductal and lobule-alveolar proliferation.

In the mouse mammary gland, Sekhri, Pitelke and Doeme (1967) found that the featal and one day old glands have rudimentary duct system, terminating in end buds which were absent in one to three week glands and reappeared at the four week stage.

Turner (1952), Mayer and Klein (1961) described the histological structure of the mammary gland as follows:

- i) Mammary parenchyma: has different epithelial structure at the ducts and acini levels, both as regards the epithelium and periepithelial structures.
 - ii) Mammary Stroma: contains inter-lobar connective,

smallest lobule was consisted of elonated tubes of sacs, alveolar ducts, covered by round evaginations and the alveoli.

The alveoli:

The acini or alveoli which together form the lobulo-elveolar system, were described by Schafer (1952) in human and Mayer and Klein (1961) in cow and goat. They are small vesicles or sacs of unequal sizes, made up of a basement or vitreous membrane, alayer of mycepithelial cells and a layer of secretory cells. The same descritpion was mentioned by Maximow (1952) in human; Turner (1952) in cows. goats, sows, gilts and pigs; Weber, dyend. Phillips and Mary (1957) in bovine, Chumekov (1963) in eighteen months old heifers; and Helimnin (1968) in rets. The constructure of the alveoli in these different species was almost alike. Schafer (1929). Maximow (1952) and Ham (1965) in human observed that the epithelial cells linning the alveoli were columnar in shape. Weber et al. (1957) in bovine described them as low columnar, and Mayer and Klein (1961) revealed that they may be cuboidal or columnar.

Schafor (1929) stated that the epithelial

Biborski (1956) found that the slveoli in Black Pied celves aged 7 to 25 days were fairly large and less branched than in polish Red celves at the same age.

Giebina, Puticuva and Audryavisev (1940) found in various age groups of large white pigs ranged between six and twelve months age, fully developed alveoli, with clear indications of secretory process in the epithelium linning present at twelve months.

Gross, Goodmin and silver (1958) examined the alveoli in normal and againstic sows before farrowing and showed that, they were small and filled with a hysline cesinophilic secretion. The alveoli became progressively distended and the ecsinophilic material was replaced by basophilic material and fat secretion began. At farrowing, the alveoli contracted and their contents were evaculated. Evolution in engoged glands was shown by solidification of the alveoli and by swellen and degenerating epithelial cells and later stromal proliferation.

Toe ducts:

Schafer (1929), Meximow (1952) and Hem (1965) mentioned that each mamma actually represents a group

of glands, which open by numerous ducts upon the spex of the nipple. Each dust is dilated into a small reservoir, the simis lactiferous, just before reaching the nipple, lying between and around the ducts plain muscular tissue. The ducts are found to commence in groups of seccular slveoli. Hem (1965) added that in the resting breast epithelial parenchyma, such as is present consists only of single ducts or little clusters of ducts widely separated from one another by connective tissue.

ry gland in various age groups of large white pigs c contains one to four ducts, most, frequently two, open in the tests with small opennings at the lip of the test. Each duct has a corresponding gland which has no contact with the adjacent glands openning into the same test.

In the memmary glands of human (Maximow 1952 and Ham (1965) and goat and bovine (Turner 1952 and Mayer and Klein (1961), the ducts are grouped into small lobules. These pass over without definite boundaries into the primary excretory ducts by a simple constriction. The latter, in turn gradually unite,