Visual Hygiene

An Essay
Submitted for partial fulfillment of M.Sc. Degree in Ophthalmology

Presented by

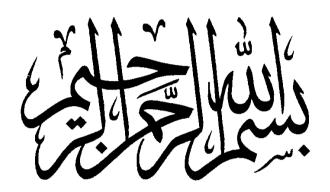
Tarek Ahmed Abdul-Salam Youssef M.B., B.Ch.

Supervised By

Prof. Dr. Shaker Ahmed Khedr.

Prof. of Ophthalmology Faculty of Medicine Ain Shams University

Prof. Dr. Mohammed Adel Abd El-Shafik


Prof. of Ophthalmology Faculty of Medicine Ain Shams University

Dr. Mamdouh H. El-Kafrawy

Lecturer of Ophthalmology Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 1998

اللحب :

ا، و. عمر عمد عمد التيوى منه حافل ما يه الرمر - من المنظرة المرم عمد عمد التي من منه دا فلي ما يه شي المنظرة من المنظرة من عبد المنزية من المنزية من عبد المنزية من المنزية

Table of Content

Table of Content
List of Figures
List of Tables
List of Abbreviations
Acknowledgment
Introduction and Aim of the Work
Chapter One: Electromagnetic Radiation9
Chapter Two: Illumination & The Eye47
Chapter Three: Visual Display Units
Chapter Four: Prevention of Eye Infections83
Chapter Five: Sports Eye Injuries
Chapter Six: Pediatric Visual Hygiene
Chapter Seven: Driving111
Chapter Eight: Blindness
English Summary
References
Arabic Summary

List of Figures

Figure 1 UVR effect on DNA and it Repair	13
Figure 2 Electromagnetic Spectrum	14
Figure 3 Sites of absorption of different optical radiation	16
Figure 4 The anterior segment act as a lens that focus light transcameral to the nasal	
limbus	24
Figure 5 The anterior segment act as a lens that focus light transcameral to the nasal	
equator of the cystalline lens	25
Figure 6 A summary of the possible anterior segment complications of UV radiation	27
Figure 7 A schematic diagram of the Scanning Laser Ophthalmoscope	42
Figure 8 Recommended illumination ratios and surface reflectances	52
Figure 9 Reflections by low minus lenses	62
Figure 10 Bright sources can be imaged by the cornea and then by a spectacle lens to form	
an annoying bright spot in the visual field	62
Figure 11 Optical principle of an antireflective coating	64
Figure 12 The focusing ability varying with age.	72
Figure 13 The restricted range of clear vision of older operators wearing spectacles only	
for reading.	72
Figure 14 Executive bifocal lenses	73
Figure 15 Trifocal lens	74
Figure 16 The typical dimensions and surface reflectance of a workstation according to BS	
. 7179 (1990).	79

List of Tables

Table 1 The ranges and sources of different wavelengths of light.	
Table 2 Safe viewing time for various ophthalmic instaments	39
Table 3 Photometric Units.	49
Table 4 WHO Visual Impairment-Level Classification	12:
Table 5 Epidemiology and Causes of Worldwide Blindness	120

List of Abbreviations

AMD Age-related macular degenerations

ANSI the appropriate American National Standard

AOP Association of Optometrists

CIBS Chartered Institute of Building Services

CR39 Columbia Resin 39 made of allyl diglycol carbonate

EKC Epidemic keratoconjuctivitis

eV Electron Volt, which measures electron energy

GHz A billion (1x 10⁹) cycles per second

HSE Health and Safety Executive

IR A,B,C Infra-red radiation , A (780-1400 nm) B (1400-

3000nm) C (3000-10000)

J/cm² Joule per square meter

LASIK laser in situ keratomileusis

LGV Large goods vehicles

lm/m² lumen per square meter

Ix Lux = lumen/m² a unit of Illuminance

MHz A million (1x 10⁶)cycles per second

MPE Maximum permissible exposure

mW Milliwatt

NIOSH US national Institute of Occupational safety and

Heath

PCV Passenger-carrying vehicles

PUVA	Psoralen Ultra-violet A treatment (A treatment for
	psoriasis)
Rad	Rad is defined as the absorbed dose of radiation
	when 1gm of material absorbs 100 ergs of energy; 1
	$rad = 10^{-2} J/kg$
TRRL	Transport and Road Research Laboratory
UV A, B, C	Ultra-violet radiation A (315-400nm) B (280-315nm)
	C (200-280nm)
WHO	World Health Organization