DIAGNOSTIC VALUE OF MR IMAGING WINTERNAL DERANGEMENT OF THE KNEE

ESSAY

Submitted in Partial Fulfillment for the Master Degree of **Radiodiagnosis**

By Nihad Ahmed Hannoura $\mathcal{M.B.,B.Ch.}$

Supervisors

Prof. Dr. Abdel Zaher Hassan

Professor of Radiodiagnosis Faculty of Medicine Ain Shams University

Dr. Mohamed Zaki

Lecturer of Radiodiagnosis Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 1993

\mathcal{A} CKNOWLEDGEMENT

I would like to express my great appreciation and gratitude to Prof. Dr. Abd El Zaher Hassan, Professor of Radiodiagnosis, Ain Shams University, for his wise guidance and sincere supervision.

I am also grateful to Dr. Mohamed Zaki, Lecturer of Radiodiagnosis, Ain Shams University, for his generous help and precious advice.

I would also like to express my deepest thanks to Prof. Dr. Hoda El Deeb, Professor of Radiodiagnosis, Ain Shams University, for her continuous support and guidance she offered me during my work.

Finally, my special lovely regards to my Mother, who encouraged, helped and supported the completion of this work.

ABSTRACT

This study was designed to determine the diagnostic value of Magnetic Resonance Imaging in internal derangement of the knee.

At first, we started by anatomy of the knee joint, technique of examination, MRI anatomy, pathological spot lights, MRI manifestations then summary and conclusion.

CONTENTS

	Page
Introduction and Aim of The Work	1
Basic anatomy of the knee joint	2-21
Technique of examination of the knee joint by MRI	22-39
MRI anatomy of the knee joint	40-64
Pathological spot lights	65-86
MRI manifestation	87-127
Opinion	128-129
Summary and Conclusion	130-131
References	l32-l44
Arabic Summary	

LIST OF FIGURES

Fig.	No Title	Page
1	Right knee, anteromedial aspect	5
2	Right knee, posterior aspect	5
3	Right knee, posterior view, external aspect	8
4	Right knee, posterior view, internal aspect	11
5	Right knee, attachments of cruciate ligaments	13
6	Right knee, anterior view, external aspect	18
7	Right popliteal fossa	19
8	Surface coil positioning for knee area	27
9	Undersurface posterior medial meniscal tear	30
10	Horizontal posterior medial meniscal tear	32
11	Undersurface posterior medial meniscal tear (3D))
12	Horizontal posterior medial meniscal tear (3D)	35
l3	Straight sagittal image	38
l 4	Oblique coronal image	39
l5	Coronal sections	4 l
l6	Coronal sections	42
17	Oblique coronal image	45
l8	Angulated coronal images	46
19	Transaxial MRI	48
20	Transaxial MRI	49
21	Transaxial MRI	50
22	Sagittal sections	52
23	Sagittal sections	53
24	Sagittal sections	54
25	Straight sagittal MR images	55
26	Diagramatic drawing showing the posterior and	
	ant. cruciate ligaments	57
27	Oblique sagittal image	59

28	Oblique sagittal image	60
29	Tear of medial collateral ligament	67
30	Combined injury	7l
31	Tear of posterior cruciate ligament	73
32	Lateral side of the knee	76
33	a) Tear in the meniscus	79
	b) Types of meniscus tear	79
34	Disruption of the patellar tendon	8l
35	Types of supracondylar fractures	82
36	Types of femoral condylar fractures	82
37	Classification of tibial condylar fractures	84
38	Classification of intercondylar eminence fracture	
39	Mechanisms of injury of osteochondral fractures	86
4 0	Anterior and posterior cruciate ligaments	
	(Tl-weighted)	89
4 l	Normal ACL on Tl-image	89
42	Torn ACL	91
4 3	Midsubstance tear of ACL	92
44	Anterior cruciate tear	93
45	Intact posterior cruciate ligament	95
46	Straight sagittal MR images	95
47	Disrupted PCL	96
48	Torn posterior cruciate ligament	96
49	Collateral ligaments	98
5 0	Disrupted lateral collateral ligament	100
5l	Normal anatomy of the meniscus	101
52	Grade l meniscal tear	103
53	Grade 2 meniscal tear	104
54	Grade 3 meniscal tear	106
55	Closed meniscal tear	107
56	Flap tear	108
57	Torn medial meniscus	109
58	Bucket-handle tear	111

59	Parrot-beak tear	ll2
60	Discoid lateral meniscus	113
6l	Bone bruise	116
62	Stress fracture	117
63	Tibial plateau fracture	118
64	Femoral fracture	118
65	Osteochondral fracture	120
66	Joint effusion	121
67	Chondromalacia patellae	123
68	Osteochondritis dissecans OCD	126
69	Osteochondritis dissecans OCD	127

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

- Internal derangements of the knee are very common. Accurate assessment of the nature of these derangements is a prerequisite for appropriate therapy.
- The clinical diagnosis of internal derangements of the knee is difficult and diagnosis is usually performed by means of plain radiography, arthrography, computed tomography and magnetic resonance imaging.
- Magnetic resonance imaging (MRI) proved to be superior in providing soft tissue contrast and in the evaluation of the knee for a wide range of pathological conditions.
- MRI of the knee is a rapid, safe and highly accurate means of non-invasively assessing the status of the knee joints (Mink et al.; 1988).

THE AIM OF THIS WORK is to emphasize the role of MR imaging as an accurate means for non-invasive assessment of the internal derangement of the knee.

ANATOMY

ANATOMY OF THE KNEE JOINT

The knee is a synovial joint between the femur and the tibia. The joint can flex or extend like a hinge.

Extension is for propulsion and flexion is used prior to this and also to absorb the shock (by quadriceps) in handing.

In addition, the flexed knee can rotate as in change of direction at speed. This active rotation is a matter of choice, and is not to be confused with the passive and inevitable rotation that occurs in straightening the knee in the "screw-home" mechanism.

During all these movements, the knee is adapted to be weight-bearing and stable in any position (Last, 1978).

1- Bony Contours:

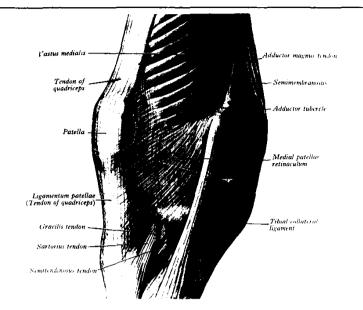
The plateau of the tibia possesses two separate articular facets, each slightly concave. The medial facet lies wholly on the upper surface of the condyle, but the lateral facet curves back over the posterior margin of the tibial condyle. This bevelled margin allows withdrawal of the lateral meniscus by the popliteus muscle. The femur has two condyles, separated by a deep notch, but fusing anteriorly into a groove for articulation with the patella. The lateral ridge of the trochlear groove is very prominent. The curve of the femoral condyles is coma-shaped (in lateral profile). It is flatter on the end of the femur and more highly curved at the free posterior margin of each condyle. The distal surface of the medial condyle is narrower, longer and more curved than the lateral condyle. This is for the screw-home movement. The articulation surface of the patella is divided by a vertical ridge into a large lateral and a small medial surface. The latter is further divided by a vertical ridge into two smaller areas. The large lateral surface glides around in contact with the lateral condyle of the femur in all ranges of flexion. In extension, the area next to it lies on the trochlea, and the most medial of the three surfaces is not in articulation with the femur. In flexion, this surface glides into articulation with the medial condyle, and the middle of the three surfaces lies in the intercondylar notch of the femur (Last, 1978).

2- Capsule of the knee joint:

The capsule is a fibrous membrane of variable thickness containing areas of thickening that may be referred to discrete ligaments. (Fig.1.2) (Insall, 1984)

a) Posteriorly:

The capsule consists of vertical fibers that are attached:


- Above to the margins of the femoral condyles and the posterior margin of the intercondylar fossa.
- Below to the posterior margins of the tibial condyles and the posterior border of the intercondylar area.

This part of the capsule is blended above on each side with the origin of the corresponding head of gastrocnemius.

Centrally, it is augmented by fibers derived from the tendon of the semimembranosus forming the oblique popliteal ligament. The attachement of the capsule to the posterior surface of the lateral tibial condyle is interrupted and perforated by popliteal tendon (Gray, 1976).

b) Anteriorly:

The fibrous capsule is completely absent above the patella area. the patellar Elsewhere, it indistinguishably with expansions from the vastus medialis and lateralis. The expansions are attached to the margins of the patella and ligamentum patellae and extend backwards on each side as far as the corresponding collateral ligament and downwards to the condyles of the tibia. They form the medial and lateral patellar retinaculae, and the later is further strengthened by the iliotibial tract.

The right knee joint: anteromedial aspect. Fig.1: (Quoted from Gray, 1976).

Fig.2: The right knee joint: posterior aspect. (Quoted from Gray, 1976).