ECOLOGICAL AND PHYTOCHEMICAL STUDIES ON CLEOME ARABICA JUST.

 $\mathbf{B}\mathbf{y}$

AHMED MOHAMED EL-HABIBI

B. Sc. (Special Botany, 1966)

Ein Shams University

THESIS

Submitted in Partial Fulfilment of the Requirement for M.Sc. Degree.

in BOTANY

Department of Botany
Faculty of Science.
Ein Snams University.

CONTENTS

	Page
ACKNOWLEDGEMENT	
INTRODUCTION	1
PARTI	
ECOLOGICAL STUDIES	
	3
I. TAXONOMY	7
II. GEOGRAPHYCAL DISTRIBUTION	10
III. DISCRIPTION OF THE STUDIED SPOTS	13
IV. ENVIRONMENTAL CONDITIONS	13
A) Climatic Factors	_
1- Air temperature	14
2- Relative humidity	15
3- Wind velocity	15
	16
4- Evaporation	17
5- Rainfall	22
B) Edaphic Factors	22
1) Physical Factors	23
a- Granulometric analysis	
b- Water holding capacity	23
c- Moisture equivalent	25
d- Soil moisture content	25
	28
2) Chemical Factors	29
a- water soluble salts	

b- Electrical conductivity	Page 29
c- pH measurements	30
d- Total carbonate content	3 0
a to content	31
	32
f- Sulphate content	32
g- Chloride content	34
h- Organic carbon content	_
V. PENETRATABILITY AND ROOT EXTENSION	34
YI. VEGETATION ANALYSIS	37
1) Communities	39
2) Periodic Changes	52
	57
J) Dimensions VII. SAP OSMOTIC PRESSURE	57
	63
VIII. SEED GERMINATION	64
Methods	64
a- Effect of temperature	65
b. Effect of rainfall	
c- Effect of salinity	66
d- Effect of depth of sowing	66
Results and Discussion	67
a- Effect of temperature	67
b- Effect of rainfall	57
c- Effect of salinity	71
	71
d- Effect of denth of sowing	

	Page
IX. SEED OUTPUT, WEIGHT AND DIMENSIONS	74
a- Seed Output	76
b- Weight and Dimension of Seed	76
PART II	
PHYTOCHEMICAL STUDIES	
CHAPTER I. PHYTOCHEMISTRY OF THE SHOOT PARTS.	
REVIEW OF LITERATURE	77
I. EXPERIMENTAL	80
Source of Material	80
II. GENERAL ANALYSIS	80
a) Moisture content	81
b) Ash content	81
c) water soluble ash	82
d) Acid insoluble ash	82
e) Soluble sugars and total carbohydrate contents	83
f) Total nitrogen content	83
g) Tannin content	84
h) Crude fibre content	85
III. PRELIMINARY PHYTOCHEMICAL SCREENING	87
IV. EXTRACTION WITH SUCCESSIVE SELECTIVE ORGANIC SOLVENTS	
AND EXAMINATION OF THEIR RESPECTIVE RESIDUES	90
V. INVESTIGATION OF THE SHOOT FLAVONOIDS	95
A) Chromatographic Investigation of the Main	
Flavonoids	97

	Page
1- Paper chromatography	97
2- Thin layer chromatography	100
3- Column chromatography	102
B) Hydrolysis of the Separated Flavonoid	103
a- Identification of sugars (glycone) of flavonoid	
using paper partition chromatography	103
b- Identification of non-sugar part (aglycone) of	
flavonoid	105
1) With paper chromatography	106
2) With thin layer chromatography	106
c- Properties of the separated rutin	108
d- Estimation of the separated rutin	111
e- Estimation of the amount of rutin in C. arabica	
shoots collected from different localities	112
CHAPTER II, SEED CHEMISTRY	
I. EXPERIMENTAL	114
Source of the Material	114
II. DETERMINATION OF CONSTANTS AND OTHER CONSTITUENTS	114
III. PRELIMINARY PHYTOCHEMICAL SCREENING	115
IV. IDENTIFICATION OF THE INDIVIDUAL SUGARS IN THE SEEDS	117
a) Chromatographic Investigation of the Free Sugars	117
b) ,, the combined sugars	119

	Page
V. IDENTIFICATION OF THE TOTAL AMINO ACIDS IN THE SEEDS	120
VI. IDENTIFICATION OF THE LIPID CONTENT IN THE SEEDS	122
a) Preparation of the Eat Sample	122
b) Preparation of the Unsaponifiable Fraction of the	
0ils ,,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	123
d) Isolation of the Main Sterol from the Unsaponifiable	
Fraction . se	126
e) Preparation of B-Sitosterol Derivatives	131
1. B-Sitosteryl acetate	131
2- B-Silosteryl benzoate	. 531
3- B-Sitosteryl 3,5-dinitrobenzoate	132
f) Saponifiable Fraction of the Oils	132
1) Thin Layer Chromatography	134
2) Gas Liquid Chromatography	134
CONCLUSIONS	137
SUMMARY	148
REFERENCES	154
ARABIC SUMMARY	165

" This dissertation has not previously been sumbitted for a degree at this or other universities.

The references in the text will show specificially the extent to which I have availed myself of the work of other authors ".

A. M. El-Habibi

ACKNOWLEDGEMENT

I wish to express my great indebtedness and sincere appreciation to Prof. Dr. A. H. Montasir, Professor of Botany, Faculty of Science, Ein Shams University, who kindly suggested the subject together with Ass. Prof. Dr. Ahmed Fouad Shalaby, Botany Department, Desert Institute, who personally supervised the work. The kind help, indispensable advice and continuous encouragement of the two Professors made this work possible.

My thanks are due to Dr. M. N.-El-Shourbagy for reading the manuscript and to Dr. M. El-Monayeri for valuable discussion of the ecological part.

Thanks are also due to Professor Dr. H. Shata Head of the Desert Institute for the facilities given which made this work possible.

INTRODUCTION

At present time, the efforts in U.A.R. are focused to industrialize the local raw materials, including with the economic natural plants which occupy a prominent position in the national economy.

Among the natural resources of our deserts may be mentioned the utilization of medicinal plants. From the genus Cleome, only Cleome arabica was studied. The plant grows wild in the eastern desert, and nothing is known about its constituents. The studies of this species will form the subject of the present investigation. In this connection the importance of an ecological study must coincide with the phytochemical study.

The writer tried in the first part of this work to study the ecology of <u>C</u>. <u>arabica</u> already mentioned, besides its distribution in different phytogeographical regions of Egypt, proper. For this purpose monthly visits were made to the different regions of the Egyptian deserts. The communities in which the plant lives were studied, and variations in their characters in the different spots due to topographic, climatic, or edaphic factors were noted. A carefull investigation of the autecology of the plant is of a prime importance as it furnishes some knowledge for understanding the

the conditions under which it can grow successfully and to be utilized economically. Osmotic pressure measurements of plant shoots were followed at a more or less monthly intervals.

Soil texture, soil moisture, as well as the penetrabbility of the roots in addition to the mechanism of seed germination were studied.

The second part includes the phytochemical study of the plant. It includes the preliminary phytochemical screening as well as the methods of preparing the extracts and the tests for investigating the different constituents. Also it deals with the determination of constants and other certain constituents. Stress was made on the flavonoids of the plant. The main flavonoid was separated and estimated. The high seed productivity of <u>C</u>. Arabic as well as the relatively considerable weight of the seeds are the main reasons to encourage for carrying out its analysis. Their general analysis and the study of their sugars, proteins, and lipids were also done.

P A R T I

ECOLOGICAL STUDIES

I. TAXONOMY

<u>Cleome</u> is one of the seven genera belonging to family Capparidaceae recorded in Egypt. According to Täckholm (1956), it belongs to:

Division Embryophyta, Siphonogama.

Subdivision Angiospermae.

Class Dicotyledoneae.

Subclass Choripetalae.

Order Rhoedales.

Family Capparidaceae.

Genus Cleome.

The species of <u>Cleome</u> recorded in Egypt are:

Cleome arabica, Cleome droserifolia,

Cleome chrysantha, Cleome papillosa,

Cleome trinerva, Cleome brachycarpa,

Cleome paradoxa . Cleome viscosa. and Cleome hanburyana.

They are herbs or undershrubs with simple or digitate leaves and flowers in a terminal raceme (except <u>C</u>. droserifolia and <u>C</u>. chrysantha). Sepals and petals four. Stamens four to numerous, free. Cynophore absent (except <u>C</u>. hanburyana and <u>C</u>. paradoxa). Fruit capsule, stipitate or sessile, the two valves at length separating from the placenta.

Of the nine species, only <u>Cleome arabica</u> was ecologically and phytochemically studied.

According to Montasir and Hassib (1956), <u>C. arabica</u> is glandular pubescent, annual plant, lower leaves 3-foliate while the upper ones simple, leaflets oblong-linear 1.5-3.0 cm. Flowers in terminal racemes. Petals yellow, and tipped. Fruit flattened and pendulous, 4-5 cm long, 0.8 mm broad.

Wheeler Haines (1951) gave a complete discrintion of C. arabica growing in the arid Egyptian desert, at its different stages of life cycle. According to him the plant is, when fully developed being dwarf bush, about 50 cm. height with upright branches springing from a short root stock. The shoot (Fig. 1) is covered with capitate hairs, which are sticky when young, but when older become blackend by desert dust.

On bruising, the plant gives off a nauseous smell, which protects it from grazing by animals. The lower leaves on each shoot are trifoliate, and bear in their axils buds of new shoots, again with trifoliate leaves. But the upper leaves, each of which bears a single flower in its axil, which become irrigularly bifoliate, one or other of the lateral leaflets being suppressed, and finally at the end of the shoot, which becomes greatly elongated as flowering proceeds, all the leaves may become simple. The flowers when they first open are short-stalked and densely crowded at the ends of the shoots, as in many other Capparidaceae and most Cruciferae. The four sepals are unequally developed,

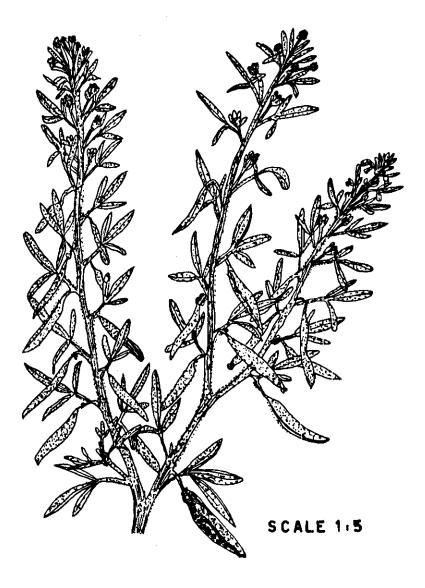


Fig. 1: Photo showing the vegetative growth of <u>C.arabica</u>.