ECOLOGICAL STUDIES OF

<u>BIOMPHALARIA</u> SNAILS IN EGYPT

BY

Samia Nabih Hanna (B.Sc.)

Department of Medical Malacology
Theodor Bilharz Research Institute
Imbaba, Egypt

A Thesis submitted in Partial Fulfilment of
The Requirements for the Award of Degree of
Master of Science

Ain Shams University
Faculty of Science
Department of Zoology
Cairo, Egypt

1995

The state of the s

بؤال تصاررت

SUPERVISORS

1- Prof. Dr. Abdalla M. Ibrahim Faculty of Science, Ain Shams University, Department of Zoology.

2- Prof. Dr. Fouad Yousif
Theodor Bilbarz Research Institute,
Department of Malacology.

3- Assistant Prof. Dr. Nawal Haroun Theodor Bilharz Research Institute, Department of Malacology.

THANKS GOD

TO MY HUSBAND AND MY SONS

ACKNOWLEDGMENTS

The authoress wishes to express her deep gratitude to Prof. Dr. Abdalla M. Ibrahim, Professor and Head of Zoology Department, Faculty of Science, Ain Shams University, for supervising the work, his valuable suggestions, continuous encouragement and for reading the final manuscript.

The authoress is greatly indebted to Prof. Dr. Found Yousif, Professor of Medical Malacology, Theodor Bilharz Research Institute, Imbaba, Egypt for his direct supervision, continuous guidance and his valuable help in kindly providing the snails and schistosome material and the preparation of the manuscript.

Deep thanks are due to Dr. Nawal Harbun,
Assistant professor, Department of Medical Malacology,
Theodor Bilharz Research Institute, Imbaba, Egypt, for
her contribution in supervision and kind help during
the performance of this study.

My thanks are also extended to Prof. Dr. Mohamed Ali Saber, Professor of Biochemistry, Theodor Bilharz Research Institute for his kind help in the electrophoresis study.

CONTENTS

	Page
Acknowledgments	A
Introduction	1
Review of Literature	4
Material and Methods	19
1- Gross anatomy of snails	20
2- Electrophoresis	22
3- Natural habitats of Biomphalaria glabrata	27
4- Maintenance of snails in the	
laboratory	28
5- Life table of snails	30
6- Exposure of snails to miracidia	33
7- Cercarial production	34
Results	35
Chapter 1- Morphological observations on	
Biomphalaria alexandrina and Biomphalaria	
glabrata from Egypt	35
1-1- Shell morphology	35
1-2- The radula	49
1-3- The renal ridge	53
1-4- Electrophoresis	55
Chapter 2- Occurrance of R. glabrata in Egypt.	59

	Р	age
Chapter 3- I	Reproductive biology of snails	62
3-1- Grov	rth	62
3-2- Sur	vivorship and life span	75
3-3- Mati	erity and egg production	84
Chapter 4- (Compatibility of snails to an	
Egy	tian strain of S. mansoni	96
4-1- Surv	vival rate at first cercarial	
shed	ding	97
4-2- Infe	ection rate	98
4-3- Lena	th of incubation period	98
4-4- Dura	tion of cercarial shedding	99
4-5- Peri	odic cercarial production	106
4-6- Patt	ern of the shedding and	
cerc	arial production of snail	108
Discussion		123
Summary		134
References		146
Arabic Sumi	mary	

List of tables

Table No	0.	Page
1	Dimensions and number of whorls of	
	B. alexandrina shells	38
2	Dimensions and number of whorls of	
٠	B. glabrata shells	46
3	Comparison between the radula of	
	B. alexandrina and B. glabrata	51
4	Main physical and chemical characters	
	of canal water of B. glabrata	61
5	Growth of B. alexandrina reared in	
	the laboratory	64
6	Growth of B. glabrata reared in the	
	laboratory	67
7	Comparison between growth and life	
	span of B. alexandrina and B. glabrata	
	under laboratory conditions	74
8	Life table of B. alexandrina and B.	
	glabrata snails reared in laboratory	78

Table No		Page
9	Life span of B. alexandrina and B.	
	glabrata reared under laboratory	
-	conditions	82
10	Age and shell diameter at maturity of	
	B. alexandrina and B. glabrata under	
	laboratory conditions	87
11	Egg production of B. alexandrina snails	
	reared under laboratory condition	88
12	Egg production of B. glabrata snails	
·	reared under laboratory conditions	89
13	Population parameter of B. alexandrina	
	and B. glabrata	95
14	Infection of B. alexandrina with S.	
	mansoni under laboratory conditions	100
15	Infection of B. glabrata with S. manson	i
	under laboratory condition	101
16	Periodic cercarial cercarial production	
	of various sizes of B. alexandrina and	
	B. glabrata	107

Table No		Page
17	Pattern of periodic cercarial	
	production of various size groups of	
	B. alexandrina infected with S. mansoni	111
18	Pattern of periodic cercarial production	1
	of various size groups of B. glabrata	
	infected with S. mansoni	113

List of figures

No. of figure	98	Page
1	Dimensions of B. shell	20
2	Photo of B. alexandrina and B.	
	glabrata shells	36
· 3	Relation between shell height and	
	shell diameter of B. alexandrina	
	and B. glabrata	40
4	Relation between ratio of height	
	and diameter (H/D) and shell	
£	(D) of B. alexandrina and B.	
	glabrata	42
5	Relation between aperature length	
	(L) and shell diameter (D) of	
	B. alexandrina and B. glabrata	43
6	Relation between ratio of	
4	aperature width to aperature	
	length (W/L) and shell diameter	
8	(D) of B. alexandrina and B.	
	glabrata	44

No. of figure:	s	Page
7	Relation between number of whorls	
	and shell diameter of B_{\perp}	
	alexandrina and B. glabrata	45
8	Outline of the radula and drawings	
	of separate teeth of B. alexandrina	. 52
9	Outline of the radula and drawings	
	of separate tuth of B. glabrata.	52
10	The renal ridge of a B. glabrata	
	snail 12 mm in diameter from	
	Mansoriya canal, Giza	
•	Governorate	54
11	Pattern of protein in the digestive	
	gland of B. alexandrina and B.	
	glabrata	57
12	Pattern of protein in the haemo	
	lymph of B. alexandrina and B.	
	glabrata	57

No. of figure	s	Page
13	Pattern of acid phosphatase in	
	the digesttive gland of $B_{\cdot\cdot}$	
	alexandrina and B. glabrata	58
14	Pattern of acid phosphatase in	
	the haemolymph of B. alexandrina	
	and B. glabrata	58
15	Growth curves of B. alexandrina	
•	and B. glabrata reared in the	
	laboratory under 26 °c ± 1 °c	71
16	Survivorship of B. lexandrina	
	and B. glabrata reared under	
	laboratory conditions	
	(26 °c ± 1 °c)	83
17	Comparison between the total number	
	of egg masses of B.	
	alexandrina and B. glabrata under	
	26 °c ± 1 °c	92
. 18	Comparison between the total	
	number of eggs of B. alexandrina	
	and B. glabrata	93

No. of f	igures	Page
19	Egg production of B. alexandrina	
·	and B. glabrata under laboratory	
	condition 26 °c ± 1 °c	94
20	Survival rate at first cercarial	
	shedding of various sizes of	
	B. alexandrina and B. glabrata	
	exposed to an Egyptian strain of S .	
	mansoni	102
21	Infection rates of various sizes	
	of B. alexandrina and B. glabrata	
	exposed to an Egyptian strain of S_{-}	
	mansoni	103
22	Incubation period of various sizes	
	of B. alexandrina and B. glabrata	
	exposed to an Egyptian strain of S_{-}	
	mansoni	104
23	Duration of cercarial shedding of	
	various sizes of B. alexandrina	
	and B. glabrata exposed to an	
	Revotian strain of S. mansoni	105