

"الْحَمْدُ لِلَّهِ الَّذِي هَدَانَا لِهَٰذَا وَمَا كُنَّا لِنَهْتَدِيَ لَوْلَا أَنْ وَمَا كُنَّا لِنَهْتَدِيَ لَوْلَا أَنْ هَدَانَا اللَّهُ"

سورة الأعراف - الأية ٤٣

Evaluation of sealing ability and retrievability of GuttaCore obturating material (An in vitro study)

Thesis submitted to the Endodontic Department, Faculty of Dentistry, Ain Shams University

For

Partial fulfillment of requirements of the Master degree in Endodontics

Submitted by

Mohammed Ibrahim El-Shahat Hassan Kabil

B.D.S Ain Shams University (2011)

Faculty Of Dentistry – Ain Shams University

2017

Supervisors

Prof. Dr. Salma El-Ashry

Professor of Endodontics
Faculty of Dentistry, Ain Shams University

Dr. Maram Obeid

Associate professor of Endodontics Faculty of Dentistry, Ain Shams University

Acknowledgement

First and for most, thanks are due to **ALLAH**, the most beneficent and merciful.

I would like to express my sincerest gratitude to *Prof. Dr.*Salma El Ashry, Professor of Endodontics, Faculty of Dentistry, Ain Shams University. The door office was always open whenever I ran into a trouble spot or had a question about my research or writing. She consistently allowed this thesis to be my own work and steered me in the right direction whenever she thought I needed it.

I would also like to express my sincere gratitude and thanks to *Dr. Maram Obeid*, Associate Professor of Endodontics Faculty of Dentistry, Ain Shams University for her continuous supervision, guidance, encouragement, and support.

Finally, I must express my very profound gratitude to the Endodontic department – Ain Shams University for providing me with unfailing support and throughout my years of study and through the process of researching and writing this thesis.

Dedication

I would like to dedicate this thesis to

My parents

My wife

My friends

For their endless support and encouragement

This accomplishment would not have been possible without you

Thank you.

List of Contents

List of Figures	II
List of Tables	VI
Introduction	1
Literature Review	3
1. Sealing ability	3
2. Retrievability	12
Aim of the study	27
Materials and Methods	28
Results	46
Discussion	77
Summary and conclusions	88
References	92
Arabic Summary	

List of figures

Figure 1.	GuttaCore obturators	28
Figure 2.	Topseal sealer	29
Figure 3.	Protaper Universal retreatment system	30
Figure 4.	Samples classification	35
Figure 5.	GuttaCore size verifier	38
Figure 6.	GuttaCore obturator	38
Figure 7.	Thermaprep plus oven	38
Figure 8.	Stereomicroscope with digital camera	43
Figure 9.	A&B: Steps of stereomicrographs analysis using ImageJ 1.46 software.	44
Figure 10.	Bar chart comparing the mean apical linear dye penetration in GuttaCore and warm vertical compaction groups.	47
Figure 11.	Stereomicrograph for a sample with GuttaCore group showing (1.57 mm) of apical dye penetration (30x magnification)	48
Figure 12.	Stereomicrograph for a sample with GuttaCore group showing (1.04 mm) of apical dye penetration (30x magnification)	48

Figure 13.	Stereomicrograph for a sample with GuttaCore group showing (1.33 mm) of apical dye penetration (30x magnification)	49
Figure 14.	Stereomicrograph for a sample with warm vertical compaction group showing (1.61 mm) of apical dye penetration (30x magnification)	50
Figure 15.	Stereomicrograph for a sample with warm vertical compaction group showing (1.71 mm) of apical dye penetration (30x magnification)	50
Figure 16.	Stereomicrograph for a sample with warm vertical compaction group showing (1.8 mm) of apical dye penetration (30x magnification)	51
Figure 17.	A column chart comparing mean areas [%] of remaining GuttaCore among the three portions of the canal using different methods of removal	54
Figure 18.	A column chart comparing mean areas [%] of remaining GuttaCore among different methods of removal at the three portions of the canal	54
Figure 19.	Stereomicrographs (with analyzed photos) showing the effect of using different solvents on the area fraction of remaining obturation material of GuttaCore (30x magnification).	55
Figure 20.	A column chart comparing mean areas [%] of remaining warm vertically compacted gutta-percha among the three portions of the canal using different methods of removal.	

Figure 21.	A column chart comparing mean areas [%] of remaining warm vertically compacted gutta-percha among different methods of removal at the three
Figure 22.	Stereomicrographs (with analyzed photos) showing the effect of using different solvents on the area fraction of remaining obturation material of warm vertically compacted gutta-percha (30x magnification).
Figure 23.	A column chart comparing mean areas [%] of remaining obturation material at the three portions of the canal when no solvent was used61
Figure 24.	A column chart comparing mean areas [%] of remaining obturation material at the three portions of the canal when chloroform was used
Figure 25.	A column chart comparing mean areas [%] of remaining obturation material at the three portions of the canal when eucalyptol was used64
Figure 26.	Stereomicrographs (with analyzed photos) comparing the area fraction of remaining obturation material of GuttaCore and warm vertical compaction technique with no solvent (30x magnification)
Figure 27.	Stereomicrographs (with analyzed photos) comparing the area fraction of remaining obturation material of GuttaCore and warm vertical compaction technique with chloroform (30x magnification)