STUDY OF SOME PHYSICAL PROPERTIES FOR SOME SOLID FILMS

THESIS

Submitted for the Degree of DOCTOR OF PHILOSOPHY

in PHYSICS

Presented by
HODA SHEHATA SOLIMAN

Faculty of Girls

Ain Shams University

Caire - Egypt

766.83

1983

ACKNOWLEDGEMENT

The author would like to express her sincere gratitude to professor Dr. M.A. Kenawy, Chairman of Physics, University College for Girls, Ain Shams University, for his close supervision, guidance and stimultating discussions throughout the period of this work.

Thanks are also due to Dr. A.A.EL-Shazly, professor of solid state physics, Faculty of Education, Ain Shams University, for valuable suggestion, guidance, and fruitful discussions during the period of this work.

The author wishes to express his deep thanks to Dr. H.T.M.EL-Shaer, and Dr.M.M.EL-Nahass, Faculty of Education, Ain Shams University for their valuable advice, successful efforts and interesting discussions.

The author vishes to express sincere appreciation and thanks to Dr.E.A.Abou Saif, Associate Professor of Physics, National Research Centre, Cairo for this useful help and advice.

Finally, thanks are also due to the colleagues at the Physics Department, Faculty of Education, where this work was fulfilled.

CONTENT	PAGE
	PAGE
ABSTRACT	i
INTRODUCTION	1
CHAPTER (I): LITERATURE REVIEW	
I.l. Crystallographic Form Of ZnSe	4
I.2. The Optical Properties of ZnSe	9
I.3. The Electrical Properties of ZnSe	14
I.4. The Photovoltaic Effect in ZnSe	18
I.4.1. Models and Theories Proposed for the Mechanism	
of the Anomalous Photovoltaic Effect (APE)	19
a. Model Based on Surface Photovoltages	20
b. Anisotropic Internal Field Model	21
c. Model Based on P+\ Junction	2 2
d. Model Based on the Dember Effect	22
e. Staking Fault Model	23
f. Crystallographic Structure Model	24
CHAPTER (II): EXPERIMENTAL TECHNIQUES	
II.1. Sample Preparation	30
II.l.a. Cleaning of the Glass Substrates	3 0
II.l.b. Thin Film Preparation	3 0
II.2. Measuring of the Film Thickness	3 2
II.2.a. Interferometric Method	3 2
II.2.b. Quartz Crystal Monitor	3.4

	Page
II.3. Investigation of the Structure of Thin Films	36
II.3.a. X-ray Diffraction Method	36
II.3.b. Electron Microscope Method	37
II.3.c. Investigation by Optical Microscope	39
II.4. Optical Studies of ZnSe Films	39
II.4.a. Methods for Optical Properties Measurement.	39
II.4.b. The Method Used for Determination of the	
Optical Constants	41
II.4.c. The Transmittance at Normal Incidence	44
II.4.d. The Reflectance at Normal Incidence	45
II.5. The Photovoltaic Effect in ZnSe Thin Films	46
II.5.a. Specimen Holder	46
II.5.b. Optical System Used in Investigating Depen-	46
dence of Photopotentials in ZnSe Films on	
the Different Parameters	46
II.6. The Electrical Resistivity Measurement	47
II.6.a. Specimen Holder	48
II.6.b. The Oven	49
II.6.c. Electrical Circuit Used	53
CHARTER (III) CIRBOTHE OF TIME CELEVIDE THIS ETIME	
CHAPTER (III) STRUCTURE OF ZINC SELENIDE THIN FILMS	
III.1. Structure of Zinc Selenide Thin Films Using	
X-ray Diffraction Technique	51
III.l.a. Orientation	54
III.l.b. Crystal Size	54

	Page
III.2. Structural Investigation of ZnSe Films Using	
Electron Microscopy	62
III.2.a. Relative Orientation Parameter	62
III.2.b. Analysis of Diffraction Patterns of	
Annealed ZnSe Films	64
III.2.c. Analysis of the Electron Diffraction	
Patterns of ZnSe Films Deposited on	
Glass Substrates at Different Tempera-	
tures	65
III.2.d. Analysis of the Electron Diffraction	
patterns of ZnSe Films of Different	
Thicknesses	67
III.2.e. Morphological Characteristics of ZnSe	
Films	67
i) Electron Microscope Transmission	
Micrographs	67
ii) Optical Photographs	69
III.3. Discussions	70
CHAPTER (IV) THE OPTICAL AND ELECTRICAL PROPERTIES OF	
ZINC SELENIDE THIN FILMS	
IV.1. Optical Properties of ZpSe Thin Films	73
IV.l.a. Dependence of the Optical Constants n and	
k on Film Thickness	74
IV.1.b. Dispersion Curves of n and k of ZnSe Films	3
with Different Thicknesses, Prepared at	
Room Temperature	• 75

		Page
IV.1.c.	Spectral Distribution of Transmittance and	
	Reflectance of ZnSe Thin Films Prepared at	
	Different Substrate Temperatures	76
IV.1.d.	Dispersion Curves of n and k of ZnSe Films	
	Prepared at Different Substrate Temperatures	76
IV.l.e.	Dependence of n and k on Annealing of the	
	ZnSe Films in Air	77
IV.1.f.	The Forbidden Band Width for Direct Transi-	
	tions in ZnSe Films	77
IV.2. Electr	rical Properties of ZnSe Thin Films	79
IV.2.a.	Dependence of the Dark Electrical Resistivity	/
	of ZnSe Thin Film on its Thickness	79
IV.2.b.	Effect of the Substrate Temperature $T_{\mathbf{s}}$ on	
	the Dark Electrical Resistivity a of ZnSe	
	Thin Films	82
IV.2.c.	Effect of the Annealing Temperature in Air	
	$(T_{f A})$ on the Dark Electrical Resistivity of	
	ZnSe Thin Films	83
IV.2.d.	Dependence of Dark Electrical Resistivity	
	of ZnSe Thin Films on the Type of the Subs-	
	trate	83
IV.3. Discus	ssion	84

ъ,	

Page
CHAPTER (V) ANOMALOUS PHOTOVOLTAIC EFFECT IN ZnSe THIN
FILMS OBLIQUELY DEPOSITED IN VACUUM
V.l. Anomalous Photovoltaic Effect (APE) in ZnSe
Thin Films Obliquely Deposited in Vacuum 87
V.2. Dependence of the (APE) on the Films Thickness.90
V.3. The Dependence of the(APE)on the Angle of
Deposition ذ 91
V.4. Dependence of the Open Circuit Photovoltages
(V_{oc}) on the Substrate Temperature(T_s)92
.V.5. Dependence of the Open-Circuit Photovoltages
(V_{oc}) on the Annealing Temperature $(T_A),\ldots$ 94
a) Dependence of the(V _{oc})on the Annealing
Temperature in Air(T _A)94
b) Dependence of the Open-Circuit Photovolta-
$\operatorname{ges}(\mathtt{V}_{\mathtt{oc}})$ on the Annealing Temperature Under
Vacuum T _{A-U.V} 94
V.6. Dependence of the Open-Circuit Photovoltages
on the Type of the Substrate
V.7. Discussions
CONCLUSION 9°
REFERENCES10
ARABIC SUMMARY .

ABSTRACT

The zinc selenide film structure was investigated using both the x-ray diffraction and the electron microscope techniques. Through out this investigation, it was found that zinc selenide thin films either in the polycrystalline form or in single crystalline form have two crystalline structures; wurtzite (hexagonal) and zinc blende (cubic) phases. The grain size of ZnSe thin films depends on some deposition parameters such as: the film thickness, the substrate temperature during the deposition process, the annealing temperature, the angle of deposition and the substrate type, which are investigated.

Zinc selenide thin films were found to have direction of preferred orientation of the crystallites about the (111) plane when deposited on amorphous glass substrates, while it is randomly oriented when deposited on mica substrate. The crystallite size increases with increasing the substrate temperature up to 150°C and then decreases gradually; while it decreases with increasing the annealing temperature up to 100°C above which it starts to increase.

- ii -

The optical constants of the ZnSe thin films were determined in a wide range of the spectrum (490-1600nm in case of glass substrates, 300-1600nm in case of quartz substrates). It was found that ZnSe thin films have two direct energy band gaps 2.67 eV and 3.92 eV. It was found also that the optical constants (the refractive index n, the absorption index k and the absorption coefficient α) of ZnSe thin films are independent of the film thickness, the substrate temperature and the annealing temperature i.e. there is no dependence of the optical constants on the film structure.

The dark electrical resistivities of ZnSe thin films deposited either on glass substrates or on mica substrates were measured. The effect of the substrate temperature and the annealing temperature on the dark electrical resistivity of these films was also investingated. It was found that these parameters affect strongly the dark electrical resistivity. Therefore one can conclude that the cark electrical resistivity of ZnSe thin films is affected strongly by the variations in film structure.

The photovoltaic effect was discovered for the first time, in ZnSe thin films obliquely deposited

in vacuum. The photovoltages generated in ZnSe thin films were affected by different experimental parameters such as: the film thickness, the angle of deposition, the substrate temperature during the deposition process, the annealing temperature either in air or in vacuum and the type of substrate which are investigated in this work. The variations in the magnitude and polarily of the photovoltages produced in ZnSe thin films obliquely deposited in vacuum are attributed to the changs taking place in the film structure.

INTRODUCTION

INTRODUCTION

As all the II-VI compounds, zinc selenide thin films have a wide energy band gap. Because of its wide band gap zinc selenide is a promising semiconductor for electro-luminescent applications. As well known, the optical and electrical properties of II-VI thin layer compounds may depend to some extent on the crystal structure of such thin layers.

Thereofre, much of this work was directed toward the goal of understanding the role of the ZnSe film structure in the optical properties, the electrical properties and the photovoltages produced in ZnSe thin films.

Thus it is important to investigate the ZnSe film structure, taking into account the experimental parameters which may affect it such as: the film thickness, the angle of deposition, the substrate temperature during the deposition process, the annealing temperature and the type of substrate.

Then the optical aconstrats (the refractive index n,the absorption index k and the absorption deefficient α) of thir ZnSe films deposited by thermal evaporation in vacuum were determined in a wide range of spectrum

(300-1600 nm). These investigations include the effect of structural parameters or in other words the deposional parameters on the ZnSe optical constants.

Similarly, the dark electrical resistivity of ZnSe thin films was determined taking into account the experimental parameters affecting it.

Finally, the photovoltaic effect in ZnSe thin films obliquely deposited in vacuum has received a great interest. This work represents what we believe to be the first observations of the anomomalous photovoltaic effect in films of zinc selenide. Our observations illustrate how the photovoltages generated in ZnSe thin films were affected by some experimental parameters such as: the film thickness, the angle of deposition, the substrate temperature during the deposition process, the annealing temperature in air and in vacuum, as well as the type of the substrate. Then an attempt was made to explain the variation of both the requitude and polarity of the photovoltages produced in ZnSe thin film obliquely deposited in vaccum with variation of the film structure.