THE USE OF GAMMA RADIATION IN PREPARING RUBBER MATERIALS FOR PURIFICATION OF WASTE WATER

BY

MEDHAT MOHAMED HASSAN ABDEL-HAMID

(B. Sc - Chemistry) Ain Shams University (1982)

A thesis submitted in partial fulfilment

of

The requirements for the Master Degree

in

Environmental Science

6u225

Department of Biological and Physical Science Institute of Environmental Studies and Research Ain Shams University

1997

THE USE OF GAMMA RADIATION IN PREPARING RUBBER MATERIALS FOR PURIFICATION OF WASTE WATER

By

MEDHAT MOHAMED HASSAN ABDEL- HAMID

(B.Sc - Chemistry)

A THESIS

Submitted in Partial Fulfillment of The Requirements for the Degree of Master of Science

in

Environment Sciences
(Dept, of Biological and Physical Science)

Under Supervision

Prof.Dr. M. S. Abdel Mottaleb,

Prof. Of Inorganic Chemistry, Faculty of Science, Ain Shams University

Prof.Dr. E. M. Dessouki,

Prof. of Radiation Chemistry, Head of Industrial Irradiation Division, (NCRRT).

Prof.Dr. E. M. Abdel-Bary,

Prof. Of Polymer Chemistry, Faculty of Science, Mansoura University,.

APPROVAL SHEET

THE USE OF GAMMA RADIATION IN PREPARING RUBBER MATERIALS FOR PURIFICATION OF WASTE WATER

BY

MEDHAT MOHAMED HASSAN ABDEL-HAMID

(B. Sc - Chemistry) Ain Shams University (1982)

This thesis for M. Sc of science degree has been approved

by

Prof. Dr. M. S. Abdel Mottaleb Book Mottaleb

Prof. of Inorganic chemistry, faculty of science, Ain Sahms University

Prof. Dr. A. M. Dessouki
Prof. of Radiation chemistry, Atomic Energy Authority

Prof. Dr. A. M. Zahra

Prof. of Physical chemistry. Faculty of Education - Ain Shams University

Prof. Dr. E.A. Hegazy
Prof of Radiation chemistry, Atomic Energy Authority

The Use of Gamma Radiation in Preparing Rubber Materials for Purification of Waste water

Thesis
Submitted to
Environmental Studies and Research Institute
Ain Shams University

For
M.Sc. Degree of Environmental Science
(Chemistry)
Department of Biological and Physical Science

By

Medhat Mohamed Hassan Abdel-Hamid

(B.Sc. - Chemistry)

Ain Shams University

National Center for Radiation Research and Technology

Atomic Energy Authority

Cairo - Egypt 1996

The Use of Gamma Radiation in Preparing Rubber Materials for Purification of Waste water

Thesis Advisors:

Prof. Dr. M.S. Abdel Mottaleb

Prof. Dr. A.M. Dessouki

Prof. Dr. E.M. Abdel Bary

Approved
Abdiel Mattelieb

Chi Dingunga Com

Prof. Dr. Abdalla Ibrahim

Head of Department of Biological and Physical Sciences

TO My Parents, My Wife, My Brothers and My Children

Acknowledgement

Mottaleb, Professor of Inorganic Chemistry, Faculty of Science, Ain Shams University for supervision, encouragement, support and interest in the work. The author is greatly indebted to Professor Dr. A.M. Dessouki, Head of Industrial Irradiation Division, National Center for Radiation research and Technology (NCRRT), to Professor Dr. E.M. Abdel-Bary, Professor of Polymer Chemistry, Faculty of Science, Mansoura University, and to Dr. E.M. El-Nesr (NCRRT) for suggesting the topic of research, supervision, continueous guidance and valuable discussions throughout this work.

My best thanks to Professor *Dr. A.Z. El-Bahey*, Chairman of NCRRT and to Professor *Dr. E.A. Hegazy*, Head of the Departement of Radiation Chemistry of Polymers for encouragement and care.

My best thanks to the Chemistry Departement, Faculty of Science, Mansoura University for their helps in atomic absorption measurements.

My sincere thanks to Professor *Dr. A.Yassin*, Dean of Institute of Environmental studies and Research, Ain Shams University and Professor *Dr. Abdalla Ibrahim*, Head of Department of Biological and Physical Science for their valuable help and interest. Also, my best thanks extend to all my colleagues in the department and the NCRRT.

CONTENTS

CONTENTS

			Page
AIM O	F THE	WORK	
		CHAPTER I	
I - INT	RODU	CTION	1
I-1	Types o	f rubber Wastes	2
	1-1-1	Wastes from tyre manufacture : (Rubber Compounds).	2
	1-1-2	Wastes from the tyre-rebuilding industry	2
	1-1-3	Wastes from reclaim production	2
	1-1-4	Wastes from the rubber -mechanical goods industry and	2
		rubber foot wear production	_
I-2	Reuse o	of rubber waste	3
	1-2-1	Reclamation of vulcanized rubber Wastes	3
	1-2-2	Processes of grinding rubber wastes	4
	1-2-3	Cryogenic grinding of cured rubbers	4
I-3	Applica	tion of rubber Waste	5
	1-3-1	Uses in asphalt, paving, roofing and road surfaces	5
•	1-3-2	Uses in building materials	6
	1-3-3	The use of rubber scraps in manufacture of different	6
		rubber composites	_
	1-3-4	Uses in coatings and lamination	7
	1-3-5	Miscellaneous applications of rubber waste	7
1-4	Modifie	cation of rubber Waste	8
I-5	Interac	tion of gamma rays with matter	8
1-6	Effect	of gamma -rays on polymeric materials	9
	1-6-1	Effect of gamma-rays on rubber	9
	I-6-2	Effect of gamma radiation on waste rubber	10
I-7	The d	lifferent methods of radiation grafting	12
I-8	Graft	ing of rubber	13
I-9	Wate	r and environmental pollutions	14
I-10	Gene	ral methods of water purification	16
I-11	Ion e	xchangers used for water purification	17
•		CHAPTER II	
11 - 1	ITER AT	TURE REVIEW	19
H-1		e rubber disposal	19
11-2	blend	ling of reclaimed rubber with other materials	21
II-3	Utiliz	zation of reclaimed waste rubber:	22
	<u> </u>	(i)	

		Pa
	II-3-1 In asphalt	2
	II-3-2 In Paints	2
	II-3-3 In building	2
II-4	Bio-chemical processing of waste tyre rubber	2
II-5	Radiation graft modification of rubber	2
II-6	Possibility of using grafted waste rubber	3
II-7	Ion exchangers used for treatment of wastewater	3
II-8	Removal of hazardous metals from waste water	3
	CHAPTER III	
III - EX	PERIMENTAL	3
III-1	Materials and Techniques	3
III-1-1	Materials	3
III-1-2	Techniques	3
III-1-2-1	Gamma radiation source	3
111-1-2-2	Graft copolymerization	3
III-1-2-3	Preparation of the sodium salt of grafted polyacrylic acid	3
111-1-2-4	Preparation of amidoxime rubber powder	4
III-1-2-5	Reaction between waste rubber grafted with PAAm and	4
	hydroxyl amine	•
III-1-2-6	Methods used for adsorption studies	40
III-1-2-6	-1 Equilibrium Studies (Batch Experiments)	40
III-1-2-6	-2 Columnar chelating of copper from copper sulphate solution	4
III-1-2-7	Ultra violet spectroscopy	
III-1-2-8	Ultra violet spectroscopy Atomic absorption measurments	41
III-1-2-9	Scanning electron microscopy	41
	Scanning electron microscopy	42
IV DEC	CHAPTER IV	
IV - KES IV-1	ULTS AND DISCUSSION	44
IV-1 IV-1-1	Graft copolymerization of waste rubber	44
IV-1-1 IV-1-2	Effect of inhibitor concentration.	44
IV-1-2 IV-1-3	Effect of monomer concentration.	49
IV-1-3 IV-1-4	Effect of radiation dose	49
IV-1-4	Effect of solvent composition for grafting of AN	52
IV-1-5 IV-1-6	Recovery of copper ions	54
1 A - I - O	Some parameters affecting the metal ions recovery	58
	(ii)	

		rage
IV-1-7	Effect of temperature	58
IV-1-8	Recovery of lead ions	60
IV-1-9	Recovery of cobalt ions	60
IV-1-10	Recovery of nickel ions	70
IV-1-11	Recovery of phenol	75
IV-1-12	Effect of the type of Monomer Grafted onto RP	81
IV-1-13	Scanning electron microscopy	84
IV-1-14	Practical application	84
11.11.	SUMMARY AND CONCLUSIONS	88
	REFERENCES	91
	ADARIC STIMMARY	

(iii)

List of Figures:

		Dago
		<u>Page</u>
Fig.(1)	Effect of Mohr's salt concentration on the	45
	graft yield of AAm at radiation dose 20	
	kGy.	
Fig.(2)	Effect of FeCl ₃ concentration on the graft	47
_	yield of AAc at radiation dose 20 kGy.	
Fig.(3)	Effect of FeCl ₃ concentration on the graft	48
	yield of AN at 20 kGy.	
Fig(4)	Effect of monomer concentration on the	50
	graft yield of investigated monomers,	
	(□) AAm; (■) AAc; (Δ) AN.	
Fig(5)	Effect of irradiation dose on the graft yield	51
	of investigated monomers; (D) AAm,	
,	25 wt.%; (■)AAc; 50 wt.%; (Δ) AN,	
	50 wt%.	
Fig(6)	Effect of solvent composition on the graft	53
	yield of AN (50 wt.%) at 20 kGy.	
Fig.(7)	Standard calibration curve for copper ions	55
Fig.(8)	Copper ions uptake of grafted waste rubber,	56
	(\square) RP; (\blacksquare) RP-g-PAAc; (Δ) RP-g-	
	PAANa: (•) RP-PAAm.	

Fig.(9)	Copper ions uptake of grafted waste rubber,	57
	(\Box) RP; (\blacksquare) RP-g-PAN; (Δ) RP-g-PAO.	
Fig(10)	Copper ions uptake of waste rubber powder	59
	grafted with AAm at different tempratures:	
	(\Box) 30°C; (\blacksquare) 40°C(Δ) 50°C; (\blacktriangle) 60°C.	
Fig.(11)	Copper ions uptake of waste rubber grafted	61
	with AN at different temperaures: (D)30°C;	
	(■) 40°C(Δ) 50°C; (•) 60°C.	
Fig.(12)	Copper ion uptake of rubber grafted with	62
	AO at different temperatures: (□) 30°C;	
	(■) 40°C(Δ) 50°C; (▲) 60°C.	
Fig.(13)	Lead ions uptake of grafted rubber powder;	63
	(□) RP; (■) RP-g-PAAm; (Δ) RP-g-	
	PAAc ; (▲) RP-g-PAANa; (♦) RP-g-	
	PAN; (♦) RP-g-PAO.	
Fig.(14)	Standard calibration curve for cobalt ions	64
Fig.(15)	Cobalt ions uptake of grafted waste rubber	65
,	powder (□) RP; (■) RP-g-PAAm; (Δ)	
	RP-g-PAAc; (♠) RP-g-PAN.	
Fig.(16)	Cobalt ions uptake for grafted waste rubber	69
	powder; (□) RP; (■) RP-g-PAAc; (Δ)	

RP-g-PAANa.