Anemias With pregnancy and Premature Labour

6)61 4 K

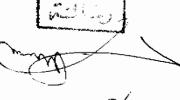
THESIS

Submitted for Partial fulfillment of Master Degree in Obstetrics & Gynaecology

BY

Samia Moharram Hassan

Supervised by


Dr. Ahmed Abou-Gabal

Assistant Professor of Obstetrics & Gynaecology Faculty of Medicine Ain Shams University

Dr. Adel Sabbaqh

Assistant Professor of Obstertrics & Gynaecology Faculty of Medicine Ain Shams University

51186

Faculty of Medicine Ain Shams University 1994.

بسم الله الرحمن الرحيم

ACKNOWLEDGEMENT

Sincere thanks and gratitude are aimed to acknowledge all those who helped me to perform the work of this thesis.

I would like to express my sincere appreciation and my deepest gratitude to Dr. Ahmed Abou Gabal, Assistant Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, for his guidance, kind supervision, continuous help and encouragement which facilitated the ability to perform this thesis.

Also, I want to express my grateful thanks to Dr. Adel Sabbaqh, Assistant Professor of Obstetrics and Gynaecology, Faculty of Medicine, Ain Shams University, for his guidance, kind supervision, continuous help and encouragement which facilitated the ability to perform this thesis.

Finally, I wish to thank all those who gave me a hand in this work.

CONTENTS

	Page
INTRODUCTION	1
AIM OF THE WORK	2
REVIEW OF LITERATURE	
- Normal Hematological indices	3
- Classification of Anemia	9
- Physiological Changes During Pregnancy	11
Types of Anemia	
- Iron Deficiency Anemia	18
- Folic Acid Deficiency Anemia	40
- Vitamin B 12 Deficiency Anemia	53
- Hemoglobinopathies	55
- Anemia and spontaneous preterm birth	74
SUBJECTS AND METHODS	80
STATISTICAL STUDIES	82
RESULTS	84
DISCUSSION	120
CONCLUSION	124
RECOMMENDATION	125
SUMMARY	126
REFERENCES	130
ARABIC SUMMARY	

Content of Tables

			rage
Table	(1):	The distribution of anemic and non	90
		anemic women according to age.	
Table	(2):	The distribution of anemic and non	92
		anemic women according to duration of	
		marriage.	
Table	(3):	The distribution of anemic and non	94
		anemic women according to working status.	
Table	(4):	The distribution of anemic and non	95
		anemic women according to previous number	
		of pregnancies.	
Table	(5):	The distribution of anemic and non	97
		anemic women according to previous unfavora	able
		outcomes.	
Table	(6):	The distribution of anemic and non	98
		anemic women according to gestational age	
Table	(7):	The distribution of anemic and non	100
		anemic women according to pregnancy	
		spacing.	
Table	(8):	The distribution of anemic and non	102
		anemic women according to present	
		outcome of pregnancy.	
Table	(9):	The results of hematological indices in	103
		anemic and non anemic women (before	
		labour).	
Table	(10):	The results of hematological indices in	104
		anemic and non anemic women (after labour).

Content of Figures

		P	age
Figure	(1):	The distribution of anemic and non	91
		anemic women according to age.	
Figure	(2):	The distribution of anemic and non	93
		anemic women according to duration of	
		marriage.	
Figure	(3):	The distribution of anemic and non	96
		anemic women according to previous	
		number of pregnancies.	
Figure	(4):	The distribution of anemic and non	99
		anemic women according to gestational age	
Figure	(5):	The distribution of anemic and	101
		non anemic women according to pregnancy	
		spacing.	
Figure	(6):	The hemoglobin level in the anemic and	107
		non anemic women (before labour).	
Figure	(7):	The hemoglobin level in the anemic and	108
		non anemic women (after labour).	
Figure	(8):	The hemoglobin level in the anemic	109
		women (before and after labour).	
Figure	(9):	The hemoglobin level in the non anemic	110
		women (before and after labour).	

Correction of mistakes

		
Mistake	Correct Word	Page
Fetal	fetal	1
Williams, 1992	Williams, et al., 1992	11
rend	renal	12
Daniel, 1987	Daniel et al., 1987	12
Sumcunding	surrounding	13
Osmolality	osmolarity	13
On	an	21
by	be	29
salis bury	Salis bury	31
manangment	manangement	52
intro muscular	intra muscular	52
anemia	anemic	52
bacteruiria	bacteruria	62
outsomal	autosomal	68
osmatic	osmotic	68
(Liberman et al)	Liberman et al	76
kalteider and kohl	Kalteider and Kohl	77
wasking ton, 1985	Wasking ton, 1985	78
on	an	78
op	of	97

INTRODUCTION

Introduction

Anemia is still a frequently encountered complication of pregnancy and even in developed countries it may be responsible for maternal, fetal morbidity and mortality (MC. Fee, 1973a).

Anemia is associated with an increased incidence of complications of pregnancy. There is an increase in premature births, Fetal distress and perinatal mortality rates (Mc Fee, 1973b).

Anemias with pregnancy are common particularly in developing countries. Because of the increased nutritional requirements of the mother and the fetus, the most common anemias are iron deficiency and folate deficiency megaloblastic anemia. Other less common causes of acquired anemia in pregnancy are aplastic anemia and hemolytic anemia. In addition, congenital anemia such as sickle cell anemia can impact on the health of the mother and fetus. (Williams, 1992).

There is an association between maternal hematocrit, hemoglobin level and the occurrence of preterm birth with an increasing rate of prematurity occurring with decreasing maternal hematocrit and hemoglobin level (Lieberman et al, 1988).

AIM OF THE WORK

Aim of the work

Due to the increased awareness of the occurrence of aneima during pregnancy. The aim of the work is to study the effect of anemia with pregnancy on its outcome particulary preterm labour.

REVIEW OF LITERATURE

Normal Hematological indices

Anemia was defined by (WHo, 1975), as a reduction of the hemoglobin concentration, the hematocrit, or the number of red blood cells, to a level below that which is normal for a given individual.

Nutritional anemia was defined, as a condition in which the hemoglobin concentration, the hematocrit, or the number of red blood cells is lower than normal, as a result of deficiency of one or more essential nutrients, regardless of the cause of such deficiency, (WHO, 1975).

Nutritional anemia must then be defined as a condition in which the hemoglobin concentration is below the level that is normal, for a given individual due to deficiency of one or more of the nutrients required for hemopolesis, and conversely, as a condition in which the hemoglobin concentration can be raised by increasing the amount of nutrient (s) absorbed.

Nutritional anemia had been reported as a world wide problem by (WHO, 1975); its prevalence is highest in the developing countries. It has become clear that iron deficiency is by far the commonest cause of anemia, and the commonest nutritional disorder. The second common cause of nutritional anemia is foliate deficiency. vitamin B_{12} deficiency and possibly protein deficiency play a less important role in the pathogenesis of anemia.

The normal hemoglobin concentration:

The normal hemoglobin concentration, was defined by (WHO, 1975) as the hemoglobin concentration in a given individual under ideal condition of health and nutrition.

It is recognized that there is a homeostatic mechanism that sets the hemoglobin level in each individual. Whereas it is not known whether this is the optimum level for health, it is accepted as "normal" for the individual. Several factors affect the normal hemoglobin concentration level as it was reported by (WHO, 1968) that the hemoglobin concentration varies with age, sex, weight, physiological status and altitude. The following values for hemoglobin concentrations below which anemia is considered to exist was taken by (WHO, 1968).

A WHO group of experts meeting in 1971 defined "normal hemoglobin concentration in the following terms:-

It is recognized that there is a homeostatic mechanism that sets the hemoglobin level in each individual. Whereas it is not known whether this is the optimum level for health, it is accepted as "normal" for the individual. The distribution of such normal values in the population should be derived from a representative sample of healthy persons, in whom the presence of nutritional deficiencies has been excluded by specific determinations, or by the prior administration of hematinic. This distribution of normal values is likely to be the same throughout the world when allowance is made for such factors as age, sex pregnancy, and altitude. (WHO, 1972).