FRACTURE RESISTANCE OF VERSACRYL AS REPAIR MATERIAL FOR COMPLETE DENTURE

A Thesis

Submitted to the Faculty of oral and Dental Medicine, Cairo University,

In partial fulfillment of the requirement for the master degree in Removable Prosthodontics

BY

Dalia Ahmed Mohammed Abd El Dayem

B.D.S (Cairo University 1999)

FACULTY OF ORAL AND DENTAL MEDICINE CAIRO UNIVERSITY 2009

Supervisors

Prof. Dr. Mohamed A. Nada

Professor of Prosthodontics

Head of the Department of Removable Prosthodontics

Cairo University

Prof. Dr. Ahmed Nour El Din A. Habib

Professor of Biomaterials

Dean of the Faculty of Oral and Dental Medicine

Cairo University

Dr. Amal Ali Swelem

Lecturer of Removable Prosthodontics

Cairo University

Acknowledgements

I would like to express my deep thanks and total appreciation to **Prof**.

Dr. Mohamed A. Nada, Head of the Department of Removable Prosthodontics, Cairo University for his valuable supervision, continuous encouragement and guidance through out this work.

I would also like to express my deep thanks and total appreciation to Prof. Dr. Ahmed Nour El Din A. Habib, Prof. of Biomaterials and Dean of the Faculty of Oral and Dental Medicine, Cairo University for his guidance, scientific discussion, kind suggestions and help.

I wish to express my deep thanks and total appreciation to **Dr**. **Amal**Ali Swelem, Lecturer of Removable Prosthodontics, Cairo University

for her sincere co-operation and kindness.

Sincere thanks to **Prof**. **Dr**. **Nadia Abas**, Professor of Prosthodontics, Faculty of Oral and Dental Medicine, Cairo University for her guidance, kind suggestions and help.

I would also like to thank all stuff members of prosthodontic laboratory for their great help and support throughout this work.

I would like to express my deepest love, appreciation and respect to my husband for his encouragement, support and remarkable patience.

Last but not least, is my special gratitude to my mother, father, my sisters and all my family for their continuous love and constant support.

I would like to send all the love in the world to my daughters.

Finally, endless thanks to my colleague Wafaa Radwan for her friendly support and concern.

Dedicated to

To my Beloved Mother and Father

To my precious Husband

&

My Little Angels Sama, Sara and Mena

بسو الله الرحمن الرحيو "و قل اعملوا فسيري الله عملكو و رسوله و المؤمنون " حدق الله العظيم

List of contents

Introduction	1
Review of literature	2-33
History of resins in dentistry	2
Types of denture base materials	3
Heat Cured Acrylic Resin Denture Base Material	3
Conventional Heat Cured Acrylic Resin	3
Modified Heat Cured Acrylic Resin	3
Chemically Cured Acrylic Resin Denture Base Materials	4
Conventional chemical-Cured Acrylic Resin	4
Modified Chemically – Cured Acrylic Resin (Pour Type)	5
Microwave-polymerized Acrylic Resin	5
Light Activated Resin Denture Base Material	6
Reinforced Acrylic Resin Denture Base Materials	7
Thermoplastic Acrylics	8
Complete denture fracture	12
Prevalence and Types of Complete Denture Fracture	12
Causes of Acrylic Resin Complete Denture Fracture	13
Mechanism of Acrylic Resin Complete Denture Fracture	19
Prevention of Acrylic Resin Complete Denture Fracture	20
	21
Repair of Mid line Fracture of Maxillary Complete Dentures	21
Test Methods For Denture Repairs	31

Aim of the study	34
Materials and Methods	35
Results	72
Discussion	86
Summary &conclusions	97
Bibliography	101

List of tables

35
38
73
74
77
78
81
82
85

List of figures

Figure 1: Self cured laboratory kit of Versacryl	36
Figure 2: Heat cured laboratory kit	36
Figure 3: Self cured laboratory Kit	36
Figure 4: The waxed up denture	41
Figure 5: The rubber base mould	41
Figure 6: The waxed-up denture in the mould after hardening of the wax	42
Figure 7: The intact denture	43
Figure 8: Wax pattern of metal plate	44
Figure 9: The metal plate	44
Figure 10: Waxed-up denture around the metal plate	45
Figure 11: Waxed up denture without the metal plate	46
Figure 12: The new rubber base mould with the standardized fracture	47
line	
Figure 13: The waxed-up "fractured" denture in the mould after	
hardening of the wax	47
Figure 14: Processed denture with the standardized fracture line on the	
cast	48
Figure 15: One denture repaired with Versacryl	50
Figure 16: Impression for the acrylic cast	51
Figure 17: The acrylic cast	52
Figure 18: Stone index	53
Figure 19: Holes of 2 mm drilled in the acrylic cast	53

edentulous ridge	54
Figure 21: The load applicator	54
Figure 22: Lloyd testing machine	56
Figure 23: Denture fracture under the applied load	56
Figure 24: The load –deformation curve	56
Figure25: Copper split mould	57
Figure 26: Intact heat cured specimens	59
Figure 27: Specimen repaired with heat cured acrylic resin	61
Figure 28: Four point bend test	63
Figure 29: The stress-strain curve	63
Figure 30: Moulds created by the metal rods	66
Figure 31: Custom made Teflon split mould	66
Figure 32: Shear bond specimen	67
Figure 33: Shear bond test	70
Figure 34: The load-deflection curve	70
Figure 35: Fracture resistance of different groups	73
Figure 36: Deflection of different groups	75
Figure 37: Flexural strength of the three different materials in intact and	
repaired specimens	77
Figure 38: The effect of repair on the flexural strength of the three	
different materials	79

Figure 20: Rubber base on the modified acrylic cast simulating the

Figure 39 :	Overall comparison between the flexural strength of the	
	different materials	81
Figure 40:	The mean Young's modulus of the three different materials in	
	Intact and repaired specimens in (MPa)	83
Figure 41:	Shear bond strength of the three different materials to heat	
	cured denture base material	85

Table 2: The experimental design

Test	Control group	Experimental group	Samples no
Fracture resistance test	7 intact dentures	7 dentures repaired with heat-cured resin 7 dentures repaired with self-cured resin 7 dentures repaired with Versacryl	28
Flexural strength test	10 heat cured denture samples 10 self cured denture samples 10 Versacryl denture samples	10 denture samples repaired with heat-cured resin 10 denture samples repaired with self-cured resin 10 denture samples repaired with Versacryl	60
Shear bond test		10 denture samples repaired with heat-cured resin 10 denture samples repaired with self-cured resin 10 denture samples repaired with Versacryl	30
Total no			118

Introduction

The loss of teeth can lead a patient to seek care for functional reasons as they notice a diminished function to a level that is unacceptable to them. Moreover the esthetic impact of tooth loss can be highly significant and may be more of a concern to a patient than loss of function.

A complete denture is a dental prosthesis that replaces all of the natural dentition and associated structures of the maxilla or mandible (Carr et al 2005).

Since 1940 polymethyl methacrylate (acrylic resin) has been the most commonly used denture base material. The success of acrylic resin as a denture base material was due to excellent appearance, simple processing and easy repair (**Shen et al 1984**).

The fracture of polymethyl methacrylate denture base is a common clinical occurrence primarily in the midline of maxillary complete dentures. Regardless of the cause of fracture or the repair material used, satisfactory repair must have adequate strength, good color match, be easy in manipulation and must maintain dimensional stability (**Agarwal et al 2008**).

This study was thus attempted to assess the use of recently introduced thermoplastic material (Versacryl) as a repair material for fractured acrylic resin dentures and compare it to the conventional heat-cured and self-cured acrylic resins as repair materials.