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ABSTRACT

This thesis presents some results in the area of differential
operators on some generalized function spaces ( Sobolev spaces ) ,
more precisely , we study some differential operators ( Cauchy
problems ) , then, the aim of the work is to study spectral theory

of operators and variational methods.

This thesis is dvided into four chapters ,
chapter 0 is concerned with Ffundamental concepts and important
definitions for revision to study the more elementary properties
that are concerned with some of the fundamentals of functiocnal
analysis .

Chapter 1 is concerned with studying in details different types
of operators , especially differential operators with constant
coefficient , then, studying the distributions , self -~ ad joint
operators , and Sobolev spaces. Moreover , we study fundamental
solution in order to study some differential operators ( Cauchy
problems ).

While chapter 2 is concerned with studying the spectral theory
of operators and their effect in some operators , especially , the

spectrum of a self-ad joint. operét.ors , then, studying the
decomposition theory and limit points of the spectrum .

Finally , we are interested in solving certain one dimensional
Schroedinger operator of Sturm Liouville type with a discontinuous
coefficient. on the half - axis [0,

o

-y"+e'éxy=7\.p(x)y . D<Cx<mw y' =0,

0 { x < — & >0,
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by using perturbations , and concluding the two conditions -

2 2
sA ‘5: = - Gad® At
&x* &t
z ¥4
and _‘f.g. + '5‘: s -~ &ad® Bt
Ex &t

Moreover , chapter 3 is concerned with studying variational
methods, especially, the Ritz method and Galerkin’s method ,
and then, solving some applied examples to make a comparison
between the two methods , and concluding that. the two methods are
nearly equivalent.

Finally, deducing two improved formulae for both Ritz and
Galerkin methods in order to simplify calculations for defining
the coefficlents that concerning the two methods , and solving one

applied example for the two improved methods.
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CHAPTER ( 0 )

g kkkok ko

FUNDAMENTAL CONCEPTS AND THEOREMS

Introduction

_EEEmESTT=—=

The principal aim of this chapter is to study
elementary properties which are concerned with =some of the
fundamentals of functional analysis , and some main definitions| 9]
and also , discussing the topological linear spaces [1] , which can
be used to give a great background of the importance of a Hilbert
space[ 5] ,which is the greatest successes of the abstract approach
to linear problems. A Hilbert space is a very special type of
linear space with a topology , and it has many of the properties
of Euclidean space . Also, Hilbert space can be viewed as
arising from a natural generalization of properties of finite
dimensional Euclidean sSpaces ’ while Hilbert’s initial
investigations leading to the class of spaces normed for him which
werea not exactly based on this fact. The most famous
operator which would be studied is the differential operator.

Operations of a special type , are called projections [5] play
an important role in the systematic study of linear operators,
where the notion of a projection is closely related to the concept

of a direct sum of linear manifolds.

1
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0.1 Definitions

TR A T R B D

A_space is a collection of elements, together with a certain

structure of relations between elements or combination.

A linear ace

EEEZEStiEx t 31

lLet X be a set of elements Y ,.. & let o & 3 be any real
numbers . Then the set X is cgalled a linear space if the

following axioms are satisfied -
1. X +y = v+ x

2. X Hy +zd=( x + yH+ =z

3. X + 0 = X

4 X+ x> =0 for each x

5. okx +y) = ax 4oy
6. Co + BI% =o x N
7. oaff3 ¥ = Ca Dx
8. 1x = x

Q. 0. = 0

Noting that elements of X are called vectors » and the
elements a, f2 are called =scalars.

Direct Sum Decomposition

The subspaces { Mi. } are said to form a direct sum
decomposition for X , such that -—

X =M & M @ ... & M

1 2 n

ie. every vector in X can be written umiquely in the form

X +x + ... +x » where, x € M.
ES 2 n 1 J

The set S is called a basis for the space X if it is the
maximal linear independent =set in X » and it generates the
whole X,
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It is said that a linear space X is of finite dimension n

if it has basis consisting of n-vectors. Otherwise, the space

is of infinite dimension.

An Operator

m—mEmEEmEETT

An operator is a mathematical rule which when applied te a

function produces ancther function.

2 2
For example - L [U] = s u + U
2 2
34 &y
2 2
hence, L = & 3 + & 3
ExX Sy’

is called a differential operator.

Linear_ operators T: ¥ ——— W-
A linear operator Iis a certain kind of function whose domain is
a linear space and whose range i contained in a linear

space. Condition of a linear operator :-
T<Cawv+hul=aT @ +b TWw
OR TCavd = a Tv) s TCavd = a T (v

Noting that, if £ v  — R then, the linear
operators is called linear functionals.

The Null Space N<TY>
e e g e sk ek

The null space N(T> of T is= the set of all elements of the

domain of whose image is =Zero such that =

NCTY) = {ueU : Tu=0}
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Algebraic_conjugate_of X

Let X be a linear space . Le't.xfbe the class of all linear
functionals on X. tThen X becomes a linear space and is called

algebraic conjugate of X. Noting that X plays an important role

in the study of linear operators with domain X,

—— e ————

If X is a set. , M is a proper subset of X, f is a function
defined on M , then , a function F defined on X is called an

extension of £ if -

F(x> = £OD when XxeEM
Noting that the extension F has certain properties possessed by f
such that bounded, continuous , dif ferentiable , etc.

Suppose X & Y are linear spaces, let A be a linear operator on
X into Y , then, for every y' € Yf there exists x'€ )Cf such that=-

Cx,x> ={Ax,¥y>
Defining a function by A® such that A'y’ = x' where ATis a linear
operator on Yfi.nt.o xf. and may be written in the form -
x , ATy'> = <Ax , ¥'> xeX , y €Y

A' = transpose of a linear operator A

Topological spaces

A set X with a family F of subsets is called a topological
space if F satisfies the following properties -

1. The empty set & and the whole space X belong to F .
2. The union of any number of members of ¥ is a member of F.

3. The intersection of any finite number of members of ¥ is a
member of F.
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Then, the family F is called 2 topology for X , and the members of

Separable Space

A topological space X is called separable if there exists a

finite or countable set S which is dense in X

Analytic Function

A function f&x> , x = (xi,...,xﬂ) is called analytic at a

point x if in a neighborhood of +{his point x_ it can be
o

represented by a uniformly converging power series -

o
fiu) = C OGx )‘Jll = M——(x—x )a
o o al (=]
|a Zo Ia 20

where, the point x_may lie in the complex plane.

Noting +that,if the function f(x) is analytic at each point
of a region G, then the function is =aid to be analytic in G.
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