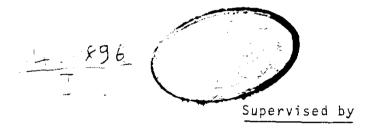
10.0.4

Ain Shams University Faculty of Engineering

BITUMINOUS MIXTURES IN HIGHWAY PAVING FOR MILITARY PURPOSES


t dat

Ву

HASSAN ISMAIEL EWADA MOHAMED

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Master in Civil Engineering

2781

DR. EISA A. SARHAN,

4. Prof. of Bighway and

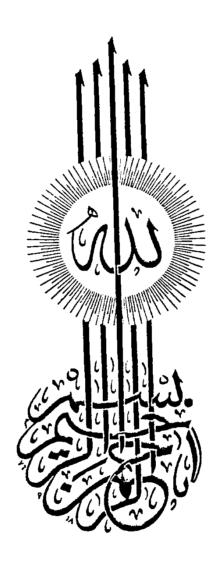
Airport Engineering,

Faculty of Engineering,

Ain-Shans University.

DR. OSAMA H. OKAIL.

Lecturer of Eighway and


Airport Engineering,

Faculty of Engineering,

Ain Shams University.

Cairo - 1988

سُنبَحَانَكُ لاَعِلْمُ لَنَا إِلاَّمَاعَلَمَّتَنَا إِنَكَ أَنَتَ الْغَلِيمُ الْحَكِيمِ مَندق اللَّهَ الْعَظِيم

Examiners Committee

Name. Title & Affiliation

- 1- Dr. MOHAMED IBRAHIM SHAKER
 Technical Director of Transport Planning
 Authority, Ministry of Transportation.
- 2- Brig. GEN. ASSOC. Prof. Dr. SAYED M. SHAABAN, Head of Automotive Department, Military Technical College.
- 3- Dr. EISA A. SARHAN, A. Prof. of Highway and Airport Engineering, Faculty of Engineering, Ain Shams University.

Signature

M. Shaker

5.5% Abdalla Sontan

Date : 18 / 12/1988

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Public Works, Ain Shams University. from November 1982 to October 1988.

No part of this thesis has been submitted for degree or a qualification at any other University or Institution.

Date

: 1/11/1988

:H.I.EWADA

Signature

Name : HASSAN ISMAIEL EWADA

ACKNOWLEDGEMENT

The author would like to express his deepest gratitude and sincere thanks to A. Prof. Dr. Eisa Abd-Allah Sarhan and Dr. Osama Hussien Okail, Department of Public Works, Faculty of Engineering, Ain Shams University. Their guidance, supervision, stimulating discussions and continuous encouragement throughout the course of this work are highly appreciated. The author would like to thank Dr. Mohamed Salah El-Din El-Hawary, Prof. of highway and airport Engineering, Faculty of Engineering, Ain-Shams University, for his supervision through the first part of this thesis.

Thanks also are due to Dr. Mohamed Shaker, for his support and encouragement, the staff of the highway research and training center in Cairo for their generous help and assistance.

The author is grateful to Brigader Engineer Mohamed

Nabil El-Moghazy for his encouragement and continuous support.

Finally the author wishes to express his deep gratitude to his parents and his wife for their continous help and encouragement.

* * * * *

صفحــة تعريــف بمقــدم الرسالـــة

الاســــــم : حسـن اسماعيل عويضـة محمــد

تاريخ الميالا : ١٩٥٧/١/١٨

محـــل الميـــلاد : كوبـرى القبــة ـ القاهــرة

الدرجـة الجامعية الاولـى : بكالوريوس هندسـة التخصـص: مدنــى

الجهسة المانحة للدرجسة

الجامعية الاولـــي : الكلية الفنية العسكريـة

تاريخ المناح المناع المناع الم

ملخصص سابيق الخبيرة :-

١٤ العمال في تصميم وتنفيذ الطرق ضمن كتائب الخدمة الوطنية وكذليك الاشاراف على طريق الحمام _ الضبعة بطول ١٧٥ كيلو متر مع شركة مساهمة البحيارة ٠

- ٦٠ الاشـراف على تنفيـد المنشآت البحرية وصيانية الاحـواض العائمـة الخاصــة
 بصيانيـة السـفن٠
 - ٣- حاصل على دورتين في المساحة من الولايات المتحدة الامريكية ٠
- 3_ العمل فى اختيار ورصـد نقط الثوابت الارضيـة اللازمـة لانشاء الخرائـــط .

الوظيفة الحاليـــة:

رائد مهندس بادارة المساحة العسكريدة •

التوقيع : حسل

CONTENTS

ABSTRACT	1
CHAPTER I: INTRODUCTION	3
CHAPTER-II: LITERATURE REVIEW	
II.l General	4
II.2 Sand asphalt and its use in paving	4
II.3 Characteristics of Military vehicles	6
<pre>II.4 Factor influencing sand asphalt per-</pre>	
formance	7
4.1 Influence of mineral filler on the	
properties of sand asphalt mixtures	
4.2 Effect of the characteristics of sand	
on the properties of sand asphalt	10
CHAPTER-III : SCOPE OF WORK AND RESEARCH PROGRAM	
III.l Scope of work	12
III.2 Research programme	. 12
CHAPTER-IV: EXPERIMENTAL STUDY AND ANALYSIS	
IV.1 Materials and testing	. 14
1.1 Bitumen	. 14
1.2 Aggregates	. 14
IV.2 Marshall tests on asphaltic concrete	
and sand mixes	. 23
	. 23
2.1 Proportioning of materials	
2.2 Preparation of Marshall specimens	
2.3 Test Procedure and Results	
2.4 Marshall Criteria	
<pre>IV.3 The Wheel-Tracking Testing</pre>	
3.1 Apparatus	
3.2 Preparation of test specimens	
3.3 Test procedure	. 40
3.4 Presentation of Wheel-Tracking Test	
D165	. 41

. 1	Page
IV-4 Analyses of Experimental Results	48
4-1. Influence of chemical composition of sand	48
4-2. Influence of grading of sand	49
4-3. Influence of mineral filler on the proport-	
ies of sand mixes	52
4-3-1- Marshall tests results	52
4-3-2- Wheel-Tracking test results	59
4-4. Correlation between Wheel-Tracking and	
Marshall Test Results	60
4-4-1- Relation between rutting depth and	
stability	60
4-4-2- Relation between rutting depth and flow.	62
4-4-3- Relation between rutting depth and number	
of passes of Wheel-Tracking Test	64
4-4-4- Relation between Marshall Quotient and	
stability, and Wheel-Tracking Test Results	65
4-5. Comparison between hot asphaltic concrete	
and sand asphalt mixes	71
CHAPTER-V: CRITERIA SELECTION AND MIX DESIGN	
DOD MILITARY INVITALES	73
FOR MILITARY VEHICLES	
V.l Wheel load	
V.2 Contact area of tyres	
V.3 Specific pressure between tyre and road	78
V.4 Technical specification of some Military	
vehicles	
V.5 Criteria selection for Military roads	, 84
CHAPTER-VI : CONCLUSIONS AND RECOMMENDATIONS	. 89
REFERENCES	92
APPENDIX-I	. 96
	122

- 1 -

LIST OF TABLES

Table		Page
1	Summary of Marshall test Results of addition of sulphur on hot sand mix using eastern asphalt	7
2	Physical properties of the 65 Pen, bitumen	15
3	Physical and engineering properties of coarse aggregate limestone from Alam El Markab Quarry	16
4	Chemical composition of different types of sands	18
5	Specific gravity of sands	19
6	Sieve analysis of sands	20
7	Physical properties of limestone filler	22
8	Grading for asphaltic concrete and sand mix.	24
9	Work sheet for computing laboratory batch weights for asphaltic concrete	28
10	Work sheet for computing laboratory batch weights for Pyramid sand mix	29
11	Work sheet for computing batch weights for El-Arish sand mix	30
12	Work sheet for computing laboratory batch weights for El-Alamin sand mix	31
13	Marshall test result for the sand mixes and the asphalt concrete mix	33
13a	Marshall Design criteria	37
14	Rutting depth after 45 min. at 60°C	42

Table		P.age
15	Rate of tracking for different types of sand mixes and hot asphalt concrete	· 43
16	The specification limits for rate of track- ing in southern England and the Mid lands	44
17	Influence of grading of sand on its properties	45
18	Relation between hot asphaltic concrete and sand mixes with the addition of 12% of mineral filler	72
19a	Technical specification of some military vehicles	81
19b	Technical specification of some Military vehicles	82
20	Specific pressure values of some Military vehicles	83
21	Relation between rate of rutting and pavement life	87
22	Pavement lifes for different types of sand mixes	88
23	Hot mix design data by Marshall method for El-Alamin sand mix without addition of mineral filler	97
24	Hot mix design data by Marshall method for El-Alamin sand mix with the addition of 3% miner-al filler	98
25	Hot mix design data by Marshall method for El- Alamin sand mix with the addition of 6% miner-	99

Tabl	e -	Page
26	Hot mix design data by Marshall method for	
	El-Alamin sand mix with the addition of 9% mineral filler	100
27	Hot mix design data by Marshall method for E]-Alamin sand mix with the addition of 12% mineral filler	101
28	Hot mix design data by Marshall method for El-Arish sandmix without addition of mineral filler	102
29	Hot mix design data by Marshall method for El-Arish sand mix with the addition of 3% mineral filler	103
30	Hot mix design data by Marshall method for El-Arish sand mix with the addition of 6% mineral filler	104
31	Hot mix design data by Marshall method for El-Arish sand mix with the addition of 9% mineral filler	105
32	Hot mix design data by Marshall method for El-Arish sand mix with the addition of 12% mineral filler	106
33	Hot mix design data by Marshall method for Pyramid sand mix without addition of mineral filler	107
34	Hot mix design data by Marshall method for Pyramid mix with the addition of 3% mineral filler	108
35	Hot mix design data by Marshall method for Pyramid mix with the addition of 6% mineral	109

Table		Page
36	Hot mix design data by Marshall method for	
	Pyramid mix with the addition of 9% mineral filler	110
37	Hot mix design data by Marshall method for Pyramid mix with the addition of 12% mineral filler	111
38	Hot mix design data by Marshall method for hot asphaltic concrete	112
39	Wheel-Tracking test results for Pyramid sand mix without addition of mineral filler	113
40	Wheel-Tracking test results for El-Alamin sand mix without addition of mineral filler	114
41	Wheel-Tracking test results for El-Arish sand mix without addition of mineral filler	115
42	Wheel-Tracking test results for Pyramid sand mix with the addition of 9% mineral filler .	116
43	Wheel-Tracking test results for El-Alamin sand mix with the addition of 9% mineral filler .	117
44	Wheel-Tracking test results for El-Arish sand mix with the addition of 12% mineral filler.	118
45	Wheel-Tracking test results for Pyramid sand mix with addition of 12% mineral filler	119
46	Wheel-Tracking test results for El-Alamin sand mix with addition of 12% mineral filler	120
47	Wheel-Tracking test results for El-Arish sand mix with addition of 12% mineral filler	121
48	Wheel-Tracking test results for Hot asphaltic	100

LIST OF FIGURES

	. P	agë
1	Grading curves of sands	21
2	Aggregate grading curve (4B gradation)	25
3	Grading curve (sand mix - 7A)	26
4	Relation between percentage of mineral filler and bulk specific gravity	34
5	Relation between percentage of mineral filler and stability	34
6	Relation between percentage of mineral filler and flow	35
7	Relation between percentage of mineral filler and percentage of void in mineral aggregates	35
8	Relation between percentage of mineral filler and percentage of void in Total mix	36
9	Rutting deformation in the rutting test as function of number of passes or time for sand asphalt mixtures without addition of mineral filler	45
10	Rutting deformation in the rutting test as function of number of passes or time for sand asphalt mixtures with addition of 9% mineral	46
11	Rutting deformation in the rutting test as function of number of passes or time for sand asphalt mixtures with addition of 12% mineral and hot	47
12	asphaltic concrete	51
13	Grading of sands with the addition of 3% of mineral filler	53
14	Grading of sand with the addition of 6% of mineral filler	54

Figure		Page
15	Grading of sands with the addition of 9% of mineral filler	56
16	Grading of sands with the addition of 12% of mineral filler	58
17	Relation between rutting depth and stability.	61
18	Relation between rutting depth and flow	63
19	Relation between rutting depth and Marshall quotient	66
20	Relation between Marshall stability and rate of tracking	69
21	Relation between Marshall quotient and rate of tracking	70
22	Relationship between dynamic loading coffecient ml, m2 and the road adhesion coeffecient	75
23	Section in a tyre with its main dimenstions	76
24	Contour map as of pressure distribution under a 11.0-38 Smooth tyre on firm sand	77
25	Tyre contact area	79
26	Marshall test property curves for Pyramid sand mix without addition of mineral filler	123
27	Marshall test property curves for Pyramid sand mix with the addition of 3% mineral filler	124
28	Marshall test property curves for Pyramid sand mix with the addition of 6% mineral filler	125
29	Marshall test property curves for Pyramid sand mix with the addition of 9% mineral filler	126
30	Marshall test property curves for Pyramid sand	1 27