2 1.14414

EXPERIMENTAL STUDIES ON BLOOD, CEREBROSPINAL FLUID AND PERILUMPH KANAMUCIN LEVELS IN RELATION TO BRAINSTEM AUDITORY

EVOKED POTENTIALS

A THESIS SUBMITTED FOR PARTIAL FULFILLMENT
OF M.D. DEGREE IN OTOLARYNGOLOGY

BY

Dr. OSSAMA ABDEL-HAMID, M.B., CH.B.; M.Sc. AIN SHAMS UNIVERSITY SCHOOL OF MEDICINE, CAIRO, EGYPT

SUPERVISED BY

24282

Prof.Dr. MAGDY HAMMED ABDOU, D.S.; D.O.L.; M.S. DEPARTMENT OF OTOLARYNGOLOGY AND COMMUNICATIVE DISORDERS AIN SHAMS UNIVERSITY SCHOOL OF MEDICINE, CAIRO, EGYPT

AND

Dr. GORDON B. HUGHES, M.D.; F.A.C.S.

CLINICAL STAFF, DIRECTOR OF EDUCATION
DEPARTMENT OF OTOLARYNGOLOGY AND COMMUNICATIVE DISORDERS
CLEVELAND CLINIC FOUNDATION, OHIO, USA

3

TO THOSE PEOPLE WHOSE DEVOTION, UNDERSTANDING AND ECOURAGEMENT MADE THIS WORK POSSIBLE

4

ACKNOWLDEGEMENT

A great many individuals have contributed in one way or another to the culmination of this work. For supervising this work with friendly guidance, professional suggestions and continous support, I am greatly indebted to Gordon B. Hughes, M.D. For suggesting the research topic and guiding me carefully to execute it, I am grateful to Professor Magdy H. Abdou. Certainly this work would not have been completed without Jennifer J. Gassman, a very enthusiastic biostatistician at the Cleveland Clinic who helped me tremendously in this project.

Throughout my two year fellowship, many others have assisted me in acquisition and understanding updated knowldge, planning and execution of the experiment, and preparation and reviewing the manuscript. At the Cleveland Clinic I would like to thank Richard H. Nodar, Ph.D.; George Williams, Ph.D.; Harvey M.Tuker, M.D.; Mohammed A. Hamid, Ph.D.; Alan Cook [Microsurgical Lab.]; Preenie De Silva [Radioimmnoassay Lab.]; Cheryl L. Chernicky (Neuroanatomy Lab.) and Raymond Trail (Animal Facilities). I greatly appreciate the assistance of all staff in the art and photography departments, especially Yu Kwan Lee and Leon D. O'Grodnick. I also would like to thank Shanon Henry for her careful editorial review. At the department of Otolaryngology, Minnesota University I would like to thank Steven K. Juhn, M.D. and Timothy T. Jung, M.D. for technical advice regarding biological fluid sampling. I am very grateful to David J. Lim, M.D. who carefully supervised the temporal bone preparation at the Otological Research Labs., Ohio State University. I also appreciate the help of Derek Dunn, Ph.D. and Roberta Arbrough in the interpretation of histopathological findings.

I would like to thank all members of Egyptian Mission Department in Cairo and Washington together with members of Amideast in Washington for honoring me with a research fellowship and for their support and care during my stay in the United States.

I am indebted to my brother Ahmad A.Hamid, Ph.D. [Professor of Civil Engineering at Drexel University] for lending me his computer word processor. My sincere thanks and appreciation finally should go to my parents whose love, care and ecouragement have always helped me to accomplish my goals.

Ossama A. Hamid

FORWARD

This study evaluates the effectiveness of Brainstem Auditory Evoked Potentials [BAEP] in monitoring aminoglycoside therapy. The purpose of this work was to examine the potential of BAEP as a predictor of aminoglycoside ototoxicity. This study also had the following objectives:

- 1- To document BAEP changes as a result of ototoxicity.
- $2\mbox{-}$ To determine the relationship between BAEP changes and dosage and duration of the drug.
- 3- To determine the relationship between BAEP changes and serum, cerebrospinal fluid and perilymph drug levels.
- 4- To study the reversibility of ototoxic BAEP chages.
- 5- To study delayed ototoxic changes.

A pilot study was first carried out to establish methodology, solve unexpected technical problems and test the validity of the hypothesis. Results suggested minor changes in the original experimental plan. A major problem was in defining experimental ototoxicity. It was decided to use sensory hair cell loss as objective evidence of ototoxicity. Accordingly, this part was added to the study.

TABLE OF CONTENTS

Acknowldegement forward

CHAPTER 1	l :	Introduction and Review of the literature :	
1.	.1.	Introduction	.1
	.2.		
1.	.3.	Mechanism of aminoglycoside ototoxicity	
	.4.		
1.	.5.	-	
		1. Serum creatinine level	
		2. Serum drug concentrations	
		3. Audiography	
CHAPTER 2	2:	Materials and Methods :	
2.	.1.	Overview	19
2.	.2.	Auditory assessment	22
		1. Preyer's reflex	22
		2. Brainstem auditory evoked potentials	
2.	.3.	-	
		1. Perilymph sampling	
		2. Cerebrospinal fluid sampling	
		3. Blood sampling	
2.	.4.	Kanamycin radioimmunoassay	
		1. Assay principle	
		2. Assay protocol	
2.	.5.	Histopathology	
CHAPTER 3	5:	Results :	
3.	.1.	Animal grouping	43
3.	.2.	Preyer's reflex	43
3.	.3.	BAEP normative data	45
3.	4.	BAEP data analysis	54

go.	٠.,
j	200
1.4	ď.
•	

1. Kaplan-Meier BREP "survivorship" analysis	57
2. Regression and correlation analysis	57
3. Descriptive analysis	67
3.5. Radioimmunoassay results	
1. RIA results of group A animals	
2. RIA results of group B animals	
3.6. Histopathology	
CHAPTER 4:	
4.1. Discussion	89
4.2. Recommendations	
CONCLUSIONS	96
SUMMARY	97
BIBLIOGRAPHY	99
APPENDIK A. Regression analysis tables[A-1 t	o A-18]
APPENDIX B. Radioimmunoasay tables[B-1 t	o B-12

CHAPTER 1

INTRODUCTION and REVIEW OF THE LITERATURE

C \

1.1. INTRODUCTION

The action of any substance on an organ can be beneficial or detrimental, depending on many factors. In the inner ear [cochlea and vestibular labyrinth], certain drugs or chemicals which are sometimes harmful are called ototoxic. Ototoxicity is "the tendency of certain therapeutic agents and other chemical substances to cause functional impairment and cellular degeneration of the tissues of the inner ear, and especially of the end organs and neurons of cochlear and vestibular divisions of the VIIIth cranial nerve" [Hawkins 1976].

The aminoglycosides are valuable antibiotics, but can be ototoxic. They are very effective against different microbial infections, especially those caused by *Pseudomonas aeruginosa* and enterobacteriaceae which often show resistance to other commonly used antibiotics (Young and Hewitt 1973, and Karney et al. 1973]. Many severe infections, especially in hospitalized patients with altered host defences, are caused by gram-negative bacilli which require aminoglycosides [DuPont and Spink 1969, and McGown et al. 1974]. Bacteria isolated from patients with disseminated tumours. leukaemias. haematosarcomas and debilitating diseases show good response to aminoglycosides, either alone or in combination with other antibiotics [Klastersky et al. 1974, and Bodey Patients in neonatal care, infectious disease, and Rodriguez 1973]. dialysis and burn units frequently are given aminoglycosides. Streptomycin also is commonly used in treating tuberculous infections.

Aminoglycoside toxicity has been identified since the beginning of the 1940s when streptomycin was first introduced to treat tuberculosis. In an attempt to lessen the toxicity of streptomycin and increase the efficacy of this new group of antibiotics, other aminoglycosides were discovered in the following order: neomycin [1949], kanamycin [1957], gentamicin [1963], tobramycin [1967], amikacin [1972] sisomycin and netilmicin [late 1970s] [Quick 1980]. All of these drugs are potentially ototoxic. They may affect the cochlea, the vestibular end-organ or both systems, and many of them are nephrotoxic [Table 1.1] [Hawkins et al. 1976].

Physicians are always faced with a critical question: How should one monitor the potential for aminoglycoside ototoxicity? To answer this question, a brief review of the pharmacokinetics and mechanism of toxicity of aminoglycosides will be discussed first.

1.2. PHARMACOKINETICS OF AMINOGLYCOSIDES

Aminoglycosides are poorly absorbed from the gastrointestinal tract; therefore they are administered parenterally, either by the intravenous or intramuscular route. They are distributed into the extracellular fluids. Aminoglycosides do not undergo significant degradation in the body and are excreted as such almost exclusively via the kidneys.

In animals following one single injection, the serum level of the aminoglycoside rises rapidly reaching a peak in 30-60 minutes, and then

Table 1.1

Aminoglycoside Toxicity

ОТОТОНІСІТУ	NEPHROTOHICITY
Cochleotoxicity	
Neomycin	Neomycin
Kanamycin	Gentamicin
Amikacin	Kanamycin
Sisomycin	Tobramycin
Vestibulotoxicity	
Streptomycin	
Vestibulo-cochleotoxicity	
Dihyrostreptomycin	
Gentamicin	
Tobramycin	
Netilmicin	

After Howkins 1976

Drugs are arranged in a descending order of severity of toxicity.

decreases in a sequential manner to a negligible amount over the next six hours. The serum half life $[t_{1/2}]$ is usually about three hours [Federspil et al. 1976, and Quick et al. 1976]. The concentration of the drug in the inner ear fluids following a single injection increases slowly to a peak level in three to six hours. It remains in the perilymph for a considerably longer period of time, then falls to a negligible amount in 24-36 hours. The average $t_{1/2}$ in perilymph for different aminoglycosides is about 11 hours [Federspil et al. 1976, and Lerner and Matz 1980]. This slow elimination from the inner ear fluids has been clearly demonstrated in both man [Gottesberge and Stupp 1969] and animals [Stupp et al. 1967; Watanabe et al. 1971, and Tran Ba Huy et al. 1983].

On the other hand, repeated daily injections of aminoglycosides have shown higher concentrations in the perilymph [Stupp et al. 1967; Watanabe et al.1971, and Quick 1976]. Repeated injections may exceed adequate excretion by the kidneys; consequently, the serum level will rise and the end result will be higher concentration in the perilymph [Brummett et al. 1978a and Quick 1980]. However, Stupp and associates [1967 and 1973] showed that the accumulation of aminoglycosides in the inner ear following daily administration was not necessarily accompanied by simultaneous accumulation in the blood or other tissues.

The relationship between aminglycoside serum level and perilymph level in response to dosage has always been a controversial issue. Federspil et al. [1976] demonstrated aminoglycoside level in the perilymph

at a given time after injection to rise linearly with the dose over a twentyfold range. However, Stupp et al. [1967 and 1973] and Watanabe et al. [1971] demonstrated a direct relationship between dose of aminoglycoside and drug concentration in the blood [Linear Curve Relationship], but inner ear fluids showed a "Saturation Curve Relationship". They mentioned that a slight elevations of dosage led to a markedly greater increase of concentration in the inner ear, e.g., doubling the dose gave a tenfold increase in the perilymph until it reached a certain level, after which increasing the dose did not lead to further increases in the perilymph.

Concerning the dynamics of aminoglycosides in the cerebrospinal fluid [CSF], Vrabec et al. [1965] and Stupp et al. [1967] showed that aminoglycosides can appear in the CSF. On the other hand, Tuazon [1981] demonstrated that aminoglycosides were not distributed in the CSF.

1.3. MECHANISM OF AMINOGLYCOSIDE OTOTOHICITY

Aminoglycosides injure the hair cells of the inner ear by interfering with the synthesis of proteins and nucleic acids [Watanabe et al. 1971, and Gonzalez et al. 1972], and/or with lipids of the cell membranes [Schacht 1974 and 1976]. The precise mechanism by which aminoglycosides exert this toxic effect is not certain. Many theories have been proposed:

1. Blood-Labyrinth Barrier:

Hawkins [1973] suggested the presence of a haemato-labyrinthine barrier which may prevent the transport of undesirable blood-borne substances into the inner ear fluids. This barrier depends upon the integrity of the spiral ligament and stria vascularis which can be damaged by aminoglycosides. This theory is supported by the observation that some drugs are ototoxic only when applied locally in the ear, because they can not penetrate the blood-labyrinthine barrier, e.g., polymyxin and chloramphenical [Stupp et al. 1973].

2. Aminoglycoside Retention In The Inner Ear Fluids:

The peculiar behavior of aminoglycosides in the inner ear and kidney, i.e., the tendency to accumulate with slow elimination, makes many authors attribute their ototoxicity to drug accumulation in perilymph [Vrabec et al. 1965 and Stupp et al. 1967]. Moreover, they suggested a correlation between the individual ototoxic potential of each aminoglycoside and its $t_{1/2}$ in the perilymph. The higher the concentration in the perilymph, the more toxic the aminoglycoside. However, the mechanism of aminoglycoside ototoxicity cannot be explained entirely by this phenomenon because of the following observations:

 The same kind of behavior has been observed in the liver which is not believed to be influenced by aminoglycosides [Toyoda and Tachibana 1978].

- ii. Cephazolin, an antibiotic known not to be ototoxic was found to accumulate in the inner ear fluids with slow excretion, even up to 24 hours [Tachibana et al. 1980].
- iii. Aminglycoside ototoxicity may occur suddenly after several injections [Quick 1980].
- iv. Brummett et al. [1978b] found netilmicin to be much less ototoxic than gentamicin although netilmicin has a longer $t_{1/2}$ in perilymph.

Therefore, accumulation of aminoglycosides may be fundamental, but the vulnerability of the tissues to these antibiotics could also contribute to ototoxicity.

3. Hair Cell Affinity To Aminoglycosides:

Ilberg et al. [1971] suggested that dihydrostreptomycin ototoxicity was in part due to the specific affinity of the drug for hair cell cytoplasm. Schacht [1979], using the affinity chromatography, was able to isolate aminoglycoside receptor sites from kidney and inner ear tissues. This receptor was found to be phosphatidyl inositol phosphate and diphosphate which control membrane-bound calcium responsible for membrane stability [Kai and Hawthorne 1969]. If aminoglycoside unites with the receptor, calcium is displaced, affecting the plasma membrane integrity. This may lead to entrance of the drug into the cell where it exerts further toxic effects.