IMMUNOHISTOCHEMICAL DETECTION OF EPIDERMAL GROWTH FACTOR RECEPTOR IN LARYNGEAL SQUAMOUS CELL CARCINOMA

Thesis Submitted for the Partial Fulfillment of the M.D. Degree in Otorhinolaryngology

Presented By: Magdy Shedid M.B., B.Ch., M. Sc.

B.Ch., M. Sc. 65762

Supervised by

Professor Dr. Mohamed Nassar, M.D.,

Professor of Otorhinolaryngology Ain Shams University

Professor Dr. Maisa El Maraghi, M.D.,

Professor of Pathology Ain Shams University

Professor Dr. Ossama A. Abdul Hamid, M.D

Professor of Otorhinolaryngology Ain Shams University

Professor Dr. Magdy Samir, M.D.

Professor of Otorhinolaryngology
Ain Shams University

Dr. Sabry Magdy Sabry, M.D.,

Lecturer of Otorhinolaryngology Ain Shams University

> Faculty of Medicine Ain Shams University 1999

يسم الله الرحمن الوحيم

قالوا سبحانكة علم لنا إلا ما علمتنا، إنكأنت الغليم الحكيم

صدق الله العظيم سورة البقرة-الآية:٣٢

go My Family

Acknowledgment

First of all, thanks to God, without his help, this work could not be accomplished.

I would like to present my sincere thanks and appreciation Professor of Mohamed Nassar, Professor Dr. to Otorhinolaryngoloy, Faculty of Medicine-Ain Shams University, for his great help, continuous support, meticulous supervision and fruitful guidance throughout this work.

I would like to express my gratitude to Prof. Dr. Maisa El Maraghi, Professor of Pathology, Faculty of Medicine, Ain Shams University who gave me the privilege of working under her supervision, her continuous guidance and worthy remarks are beyond words of thanks.

Also I would like to thank Prof. Dr. Ossama Abdul Hamid, Professor of Otorhinolaryngology, Faculty of Medicine-Ain Shams University, for his sincere help and thorough revision of every detail in this work. I am truely grateful for him for his unlimited support and help through the whole work.

Words stand short when coming to express my gratefulness to Prof. Dr. Magdy Samir, Professor of Otorhinolaryngology, Ain Shams University for his unlimited knowledge and kind criticism.

Last but not least, my great thanks and respect to Dr. Sabry Magdi, Lecturer of Otorhinolaryngology, Ain Shams University who saved no time nor effort in helping me throughout this work.

Mgdy Shedid

ABSTRACT

The application of the technique of molecular biology to the study of cancer has produced dramatic advances in the understanding of the basic biology and behaviour of these diseases.

Epidermal growth factor receptor (EGFR) is a protein product of C-erb-B oncogene - Activation of this receptor by binding of epidermal growth factor leads to cell division. In this study, EGFR expression increases with increasing grade of malignancy. In mucosa nearby malignant lesions, EGFR expression was positive in about 75% of cases. In minor pathological lesions and normal controls, EGFRs were negative, so EGFR could be an early sign of dysplasia.

It will be helpful to use EGFR expression as a guide for safety margin, postoperative irradiation and follow up for early detection of recurrence.

Key words: Epidermal growth factor receptors (EGFRs) – Immunohistochemistry – Laryngeal carcinoma.

List of Contents

1	Page
Introduction	1
Aim of the work	4
Review of Literature	5
I. Aetiology of cancer	5
II. Genetic control of cell cycle	9
III. Cytogenetics in head and neck cancers	13
A. Tumor suppressor genes	16
i) p53 gene	17
ii) RB, MTS1, DCC and the cell cycle	18
B. Oncogenes	19
i) Role of oncogenes in the normal cell	22
ii) Role of oncogenes in neoplasia	22
IV. The role of peptide growth factors and receptors in	
head and neck carcinoma	. 25
A. Peptide growth factors	. 25
i) Epidermal growth factor (EGF)/transforming	
growth factor – alfha (TGF-α)	. 27
ii) Platelet- derived growth factor (PDGF)	. 31
iii) Fibroblast growth factor (FGF)	. 31
iv) TGF-β and related growth factors	. 32
v) Cytokines	. 33
B. Epidermal growth factor receptors (EGFRs)	. 34
i) Normal human tissue distribution of EGFRs	. 38
ii) methods of measurement of EGFRs	. 38
C. Molecular events in cell growth	. 39

 V. Clinical application of peptide growth factors and receptor 	rs 4.
VI • Prognostic significance of EGFR in laryngeal	
squamous cell carcinoma	45
Material and Methods	
Results	
Discussion	86
Summary and conclusion	
References	
Arabic Summary	97

List of Abbreviations

BMP:

Bone marrow protein

CSFs:

Colony stimulating factors

DNA.

Deoxy ribonucleic acid

DSF.

Disease free survival

ECGF.

Endothelial cell-derived growth factor

EGF.

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

F G Fs:

Fibroblast growth factors

G-CSF:

Granulocyte colony. stimulating factors

GMCSFs:

Granulocyte-macrophage colony stimulating

factors

H&E:

Haematoxylin and Eosin

HNSCC:

Head and neck squamous cell carcinoma

II .-1·

Interleukin-1 grwoth cytokine

IL-2:

Interleukin-2 growth cytokine

M-CSF:

Macrophage colony stimulating factors

MAB:

N-Methyl-4-aminoazobenzene

MPL:

Minor pathological lesion

NGF:

Nerve growth factor

PDGF:

Platelet derived growth factor

Rb gene:

Retinoblastoma gene

RNA:

Ribonucleic acid

TGF-α:

Transforming growth factor α

TGF_B:

Transforming growth factor-B

TNF:

Tumor necrosis factor

V. mvc:

Virus in myeloproliferative disorder of chicken

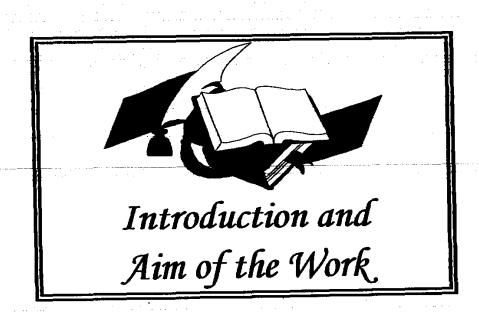
V. ras:

Virus in sarcoma of rats

V. src:

Virus from sarcoma of chicken

VPF.:


Vasopermeability factor

List of Tables	
	Page
Table (1): Some chemical carcinogens	7
Table (2): Selected oncogenes, their mode of activation and	29
associated human tumors	
Table (3): Growth factors	30
Table (4): Age incidence in laryngeal carcinoma	56
Table (5): Clinical data of patients with laryngeal carcinoma	56
Table (6): Shows duration of hoarseness of voice, sites of	58
tumors and stages of the disease (TN) in cases of laryngeal	
carcinoma	
Table (7): The relative incidence of laryngeal carcinoma	59
Table (8): Shows history and clinical findings of the lesions	59
in 7 cases with MPL	
Table (9): Collective data as regards site of the tumor	65
Table (10): Collective data as regards site of the tumor,	66
grade of malignancy and EGFR in the tumor, nearby mucosa	
and enlarged lymph nodes	
Table (11): Degree of expression of EGFR and H&E in	69
lymph node	20
Table (12): Mann-Whitney test (comparing expression of	82
EGFR in the lesion group and in the benign group)	
Table (13): Mann-Whitney test (comparing EGFR	83
expression in mucosa nearby malignant lesions group "23	
scores" and in the benign group "7 scores")	ดา
Table (14): Non-parametric correlation between EGFR of	83
the lesion and mucosa nearby lesions	0.4
Table (15): Non-parametric correlation between EGFR	84
score and the grading	0.4
Table (16): Results of correlation coefficient (non-	84
parametric correlations) between EGFR (all groups) and	
grading by H&E results	

List of Figures

	Page
Fig. (1): Various stages in cell cycle	10
Fig. (2): Control laryngeal mucosa showing negative staining (0) for	70
- · ·	, 0
EGFR (×100) Fig. (3): Minor pathological lesions showing negative (0) EGFR	71
	• •
expression (×40)	72
Fig. (4): Squamous cell carcinoma grade I shows mild cytoplasmic	12
staining of EGFR 1+ (×40)	73
Fig. (5): Squamous cell carcinoma grade I show mild cytoplasmic	13
staining of EGFR 1+ (× 100)	74
Fig. (6): Nearby respiratory mucosa of squamous cell carcinoma	/4
shows EGFR 1+ (× 40)	75
Fig. (7): A nearby mucosa of laryngeal carcinoma grade I showing mild	13
staining of EGFR 1+ (× 40)	76
Fig. (8): Squamous cell carcinoma grade II showing moderate EGFR	70
expression 2+ (× 100)	77
Fig. (9): Nearby mucosa of grade II squamous cell carcinoma showing	77
moderate expression of EGFR 2+ (× 100)	70
Fig. (10): Lymph node showing metastatic squamous cell carcinoma	78
grade II with moderate EGFR expression 2+ (× 40)	70
Fig. (11): Squamous cell carcinoma grade III showing strong EGFR	79
expression 3+ (× 40)	
Fig. (12): A nearby mucosa of squamous cell carcinoma grade III	80
showing strong EGFR expression 3+(× 40)	0.1
Fig. (13): Lymph node showing metastatic squamous cell carcinoma	81
grade III with EGFR expression 2+ (× 100)	

List of Graphs	· · ·
	Page
Graph (1): Shows number of cases with different grades of	61
malignancy	
Graph (2): Shows number of patients with different EGFR	67
expression in the tumor	
Graph (3): Shows number of patients with different EGFR	68
in the nearby mucosa	
Graph (4): Positive correlation between EGFR expression	85
(in the lesion, mucosa nearby lesions and metastatic lymph	
nodes) and grade of malignancy	

INTRODUCTION

Carcinomas of head and neck constitute about 5-7% of all new malignancies diagnosed annually in North America. The treatment of head and neck cancer during the last 20 years has been marked by significant advancement in those areas that impact on improvement in patient morbidity. Unfortunately, mortality statistics during the same period have shown little change. The failure to improve overall patient survival has emphasized the need to seek new methods of attacking this disease (Varmus, 1989).

The recent emphasis on the study of the molecular biology, genetics and immunology of cancer is motivated by the belief that understanding the fundamental mechanisms that underlie the origins of human cancer will lead to more rational means of treating these malignancies (Gullick, 1991).

Tumors arise and progress through a series of genetic changes in cancer-associated genes known as oncogenes or tumor suppressor genes. It is the accumulation of mutations in oncogenes that leads to clonal outgrowth and tumor progression. Recently, more precise molecular techniques identified specific point mutations within oncogenes that lead to tumor progression. These point mutations occur in proto-oncogenes; normal cellular genes that are activated to induce tumor growth and in tumor suppressor genes-cellular genes whose normal

suppressor function is inactivated allowing tumor progression. Because these mutations are an integral part of the clonal population of cells that allow tumor outgrowth, the detection of these specific changes in clinical samples is diagnostic for the presence of cancer (Anderson, 1992).

Already in some hematological malignancies, lung and breast cancer, oncogenes expression has been linked to various clinical parameters including tumor aggressiveness, radioresistance and propensity to tumor metastases (*Irish and Bernstein*, 1993).

Previous studies have suggested that activation of C-reb B, K-ras, myc and int-2 oncogenes in malignant head and neck tumors may be important in the development of these cancers (Christensen et al., 1992).

growth factor (EGF) is a polypeptide Epidermal stimulating growth and presumably, differentiation of a variety of mamalian epithelial tissues and cell types. EGF binds to a specific membrane receptor and thereby activates a tyrosinespecific protein kinase which is part of the intracellular domain of the receptor. This in turn leads to a variety of biochemical and physiological events and ultimately to DNA replication and cell division. The EGF receptor is detectable on a large variety of cell types and tissues including the proliferative component of epithelia. A close similarity between the amino acid sequence the cytoplasmic and from the erb-B oncogene and