إِنْ مِ اللَّهِ الزَّهَا إِنَّا الزَّهِ عِنْ الرَّهِ عِنْ الرَّهِ عِنْ الرَّهِ عِنْ الرَّهِ عِنْ الرَّهِ

﴿ وَلَقَدْ خَلَقَنَا ٱلْإِنسَنَ مِن سُلَنَلَةِ مِن طِينِ ﴿ إِنَّ أَمُّ جَعَلْنَهُ نُطْفَةً فِ قَرَارِمَّكِينِ ﴿ فَلَقَنَا ٱلنَّطْفَةَ عَلَقَةً فَخَلَقْنَا ٱلْعَلَقَةَ مُضْغَتَ الْعَلَقَةَ مُضْغَتَ الْعَلَقَةَ مُضْغَتَ الْعَلَقَةَ مُضْغَتَ الْعَلَقَةَ مُ اللَّهُ عَلَقَا اللَّهُ عَلَقَا اللَّهُ اللَّهُ اللَّهُ اللَّهُ اللَّهُ عَلَقَا اللَّهُ عَلَقًا عَاخَرُفَتَ بَارَكَ ٱللَّهُ أَخْسَنُ ٱلْخَلِقِينَ ﴾ ﴿ سورة المؤمنونُ الْعُمْنُونُ اللَّهُ عَلَقَا اللَّهُ عَلَقًا عَاخَرُفَتَ بَارَكَ ٱللَّهُ أَخْسَنُ ٱلْخَلِقِينَ ﴾ ﴿ سورة المؤمنونُ اللَّهُ عَلَقَهُ مُنْ اللَّهُ عَلَقَهُ أَنْ اللَّهُ عَلَيْهُ اللَّهُ اللَّهُ عَلَيْهُ اللَّهُ عَلَقَهُ اللَّهُ عَلَيْهُ اللَّهُ اللَّهُ عَلَيْهُ اللَّهُ عَلَيْكُ اللَّهُ عَلَيْهُ عَلَيْهُ عَلَيْهُ عَلَ

THYROID FUNCTION TESTS IN THE HIGH - RISK NEWBORN

A THESIS

Submitted For the Partial Fulfillment

618.9201 N. F.

of

M. D. DEGREE

IN

PAEDIATRICS

67.73

By

NAGWA FATHI HAMDI

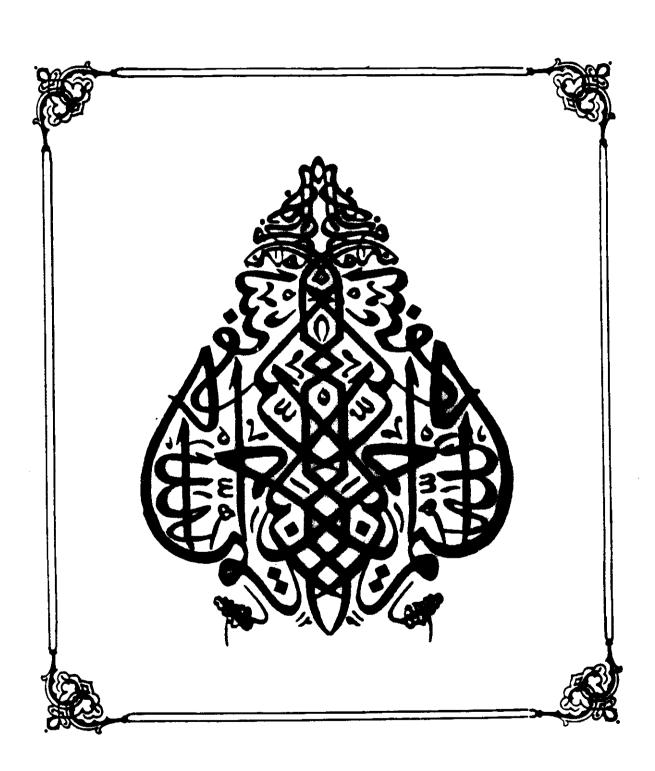
M. B. ch. M.S.

Supervised by

DR. SAADIA MOHAMMED ABDEL FATTAH

Professor of Paediatrics - Ain Shams University

DR. SAWSAN AMIN AL SOKKARI


Professor of Paediatrics - Ain Shams University

DR. L. V. DEVARAJAN

Ass. Professor of Paediatrics - Kuwait University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1992

To my husband, Dr. Mohammed Matar

and

My children,
Mohammed, Amr and Doha
who were very considerate
and supportive.

To my father,
Mr. Fathi Hamdi
who has been extremely
helpful and supportive
althrough
I convey my thanks
and deep gratitude

ACKNOWLEDGEMENT

I am greatly indebted to Professor Dr. Saadia Mohammed Abdel Fattah and to Professor Dr. Sawsan Amin Al Sokkari for their helpful advice and critical review of the work and for dedicating part of their valuable time evaluating the study and directing me through valuable criticism to put this work in a more or less proper presentation.

I greatly aknowledge the support and guide offerred by Assistant Professor Dr. L.V. Devarajan without whose cooperation this study would not have been possible.

I appreciate the excellent technical assistance offerred by Dr. Oneiz Al Oneizi, Head of the Endocrinology laboratories at Al Sabah hospital- Kuwait.

I would also wish to thank the technicians of the Endocrinology laboratories at Al Sabah hospital, Kuwait, for their effortin radioimmunoassay hormone determinations.

I convey my warm thanks to all the nursing staff in special care baby units and labour wards at maternity hospital- Kuwait for their great help.

TABLE OF CONTENTS

FAC	7 C.
ACKNOWLEDGEMENT	
List of Abbreviations	
List of Tables	
List of Figures	
*INTRODUCTION AND AIM OF THE WORK	. 1
*REVIEW OF LITERATURE:	. 4
=THYROID PHYSIOLOGY IN THE FETUS AND NEWBORN	. 4
*Thyroid Physiology and function during gestation.	. 4
.Maternal thyroid	. 5
.Placenta	. 7
.Thyroid Hormone metabolism in amniotic fluid o	of
man	9
.Fetal Thyroid	11
1.Normal development of the thyroid structur	e and
function	11
2. Synthesis of thyroid hormones	23
=ADAPTATION OF THE NEWBORN TO EXTRAUTERINE ENVIRONME	NT25
.Transient neonatal thyroidal hyperactivity	25
.Subsequent thyroid physiology	30
=THYROID FUNCTIONS IN THE FULLTERM NEWBORN	3 <i>2</i>
1. Thyroid stimulating hormone (TSH)	32
2.Thyroxine (T4)	39
3. Thyroxine binding globulin (TBG)	40

I	PAGE
4.Tri-iodothyronine (T3)	41
5. Free thyroxine (FT4); Free triiodothyronine (FT3)	3)45
6.Reverse triiodothyronine (rT3)	48
7. Thyroglobulin (Tg)	51
=PITUITARY RESPONSE TO THYROTROPIN RELEASING HORMONE	
IN THE FETUS AND NEWBORN	53
=THYROID FUNCTIONS IN PRETERM NEWBORN	56
=TRANSIENT PRIMARY HYPOTHYROIDISM OF PREMATURITY	65
=TRANSIENT HYPOTHYROXINEMIA OF PREMATURITY	69
.Incidence	75
.Signs and symptoms	77
.Geographical differences	77
=EUTHYROID SICK SYNDROME	79
=LUNG DEVELOPMENT AND MATURATION	82
=SURFACTANT PRODUCTION	86
=EFFECT OF THYROID HORMONES ON LUNG MATURATION	89
=RESPIRATORY DISORDERS IN THE NEWBORN	101
-Respiratory distress syndrome	102
-Meconium aspiration	105
-Transient tachypnea of the newborn	108
-Congenital pneumonia	109
=EFFECT OF RESPIRATORY DISTRESS ON THYROID FUNCTIONS	
IN THE NEWBORN	114

ng panggang ang kanggang kanggang ang kanggang ang kanggang ang kanggang ang kanggang ang kanggang ang kanggan

	PAGE
=CONTROVERSIES IN THE TREATMENT OF TRANSIENT	
HYPOTHYROIDISM	135
*PATIENTS AND METHODS	142
*RESULTS	157
*DISCUSSION	177
*SUMMARY AND CONCLUSION	229
*REFERENCES	237
*ARABIC SUMMARY	

•

ABBREVIATIONS

LIST OF ABBREVATIONS

AFD : Appropriate-for-date.

ELBW : Extremely low birth weight.

F.T. : Fullterm

FT4 : Free thyroxine.

FTI(FT4I): Free thyroxine index.

G.A. : Gestational age.

LSCS : Lower segment caesarean section

P.T. : Preterm

RD : Respiratory distress.

RDS : Respiratory distress syndrome.

RIA : Radioimmunoassay.

rT3 : Reverse tri-iodothyronine.

sFD : Small-for-date.

svD : Spontaneous vaginal delivery.

t : T-test

T₃ : Tri-iodothyronine.

 T_3UR : T_3 uptake ratio.

T₄ : Thyroxine

TBG : Thyroxine-binding globulin.

Tg : Thyroglobulin.

TRH : Thyrotropin-releasing hormone.

TSH : Thyrotropin

VE : Vacuum extraction

VLBW : Very low birth weight.

LIST OF TABLES

Table	Page
Table 3	159
Table 4	160
Table 5	161
Table 6	162
Table 7	163
Table 8	164
Table 9	165
Table 10	166
Table 11	167
Table 12	168
Table 13	169
Table 14	170
Table 15	171
Table 16	172
Table 17	173
Table 18	174
Table 19	175
Table 20	176

LIST OF FIGURES

Figure		Page
Figure 8		1 60A
Figure 9		1 60B
Figure 10		1 61A
Figure 11		162 A
Figure 12		163A
Figure 13		172A
Figure 14		1 72B
Figure 15		172C
Figure 16		172D
Figure 17		1 72E
Figure 18		172F
Figure 19		1 72G
Figure 20		172H
Figure 21		175A
Figure 22		1 75B
Figure 23		175C
Figure 24		1 75D
Figure 25		1 75E
Figure 26		1 75F
Figure 27		1 75G
Figure 28		1 75H
Figure 29		1 76A
Figure 30		176 B

ADULT HORMONE VALUES

Thyroxine (T_4)	65_150 nmol/L
Free thyroxine (FT ₄)	10_21 pmol/L
Thyroid Stimulating Hormone (TSH)	up to 10 uIu/L
Triiodothyronine (T ₃)	1.2_3.4 nmol/L
Reverse triiodothyronine (rT ₃)	0.14_0.54 nmol/L
Thyroxine Binding Globulin (TBG)	12_32 mg/ L
	(12_32 ug/ml)
Triiodothyronine Uptake Ratio (T ₃ UR)	25.5_34.4%
Free Thyroxine Index (FT_AI)	16.7_51.6

INTRODUCTION

INTRODUCTION

During fetal life the central nervous system and the neuroendocrine transducer systems are probably not of vital importance to fetal survival or growth; the maternal-placental unit provides a constant supply of growth and energy substrate and maintains respiratory and excretory activities. The capacity of the newborn to survive the stresses of parturition and to function independently in the extra-uterine environment is impressive and is due in no small measure to the functional state of his limbic system or "visceral brain" inducing its hypothalamic-endocrine-motor effector pathways. Present information would suggest that most of these pathways are functional near term and perhaps by midgestation. The neuroendocrine mechanisms for stimulating the secretion of catecholamines and thyroid hormones, seem to be intact and smoothly operative at birth (Fisher, 1976).

The recent implementation of screening programs for the detection of congenital hypothyroidism has focused attention on the unique thyroid physiology and pathophysiology of the newborn. A high prevalence of both transient and permanent disorders of thyroid function has been observed.

Thyroid function is in a state of flux during the perinatal period. Thyroid hormones even though not essential for